Skip to main content
Log in

Three-dimensional computer modeling of the human upper respiratory tract

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Computer simulations of airflow and particle-transport phenomena within the human respiratory system have important applications to aerosol therapy (e.g., the targeted delivery of inhaled drugs) and inhalation toxicology (e.g., the risk assessment of air pollutants). A detailed description of airway morphology is necessary for these simulations to accurately reflect conditions in vivo. Therefore, a three-dimensional (3D) physiologically realistic computer model of the human upper-respiratory tract (URT) has been developed. The URT morphological model consists of the extrathoracic (ET) region (nasal, oral, pharyngeal, and laryngeal passages) and upper airways (trachea and main bronchi) of the lung. The computer representation evolved from a silicone rubber impression of a medical school teaching model of the human head and throat. A mold of this ET system was sliced into 2-mm serial sections, scanned, and digitized. Numerical grids, for use in future computational fluid dynamics (CFD) simulations, were generated for each slice using commercially available software (CFX-F3D), AEA Technology, Harwell, UK. The meshed sections were subsequently aligned and connected to be consistent with the anatomical model. Finally, a 3D curvilinear grid and a multiblock method were employed to generate the complete computational mesh defined by the cross-sections. The computer reconstruction of the trachea and main bronchi was based on data from the literature (cited herein). The final unified 3D computer model may have significant applications to aerosol medicine and inhalation toxicology, and serve as a cornerstone for computer simulations of air flow and particle-transport processes in the human respiratory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martonen, T. B. and Lowe, J. (1983) Assessment of aerosol deposition patterns in human respiratory tract casts, in Aerosols in the Mining and Industrial Work Environments: Fundamentals and Status Marple, V. A., and Liu, B. Y. H. (eds.), Ann Arbor Science Publishers, Ann Arbor, MI, pp. 151–164.

    Google Scholar 

  2. Martonen, T. B. (1992) Deposition patterns of cigarette smoke in human airways. Am. Indus. Hyg. Assoc. J. 53, 6–18.

    CAS  Google Scholar 

  3. Martonen, T. B. and Musante, C. J. (2000) Importance of cloud motion on cigartette smoke deposition in lung airways. Inhal. Toxicol. 12(Suppl. 4): 261–280.

    Article  PubMed  CAS  Google Scholar 

  4. Yu, G., Zhang, Z., and Lessmann, R. (1996) Numerical study of fluid flow and mass transfer in human bifurcation airways. Aerosol Sci. Technol. 25, 338–352.

    Article  CAS  Google Scholar 

  5. AEA Technology (1995) CFX 4.1 Flow Solver User Guide. AEA Technology, Harewell, UK

    Google Scholar 

  6. Heyder, J. and Rudolf, G. (1977) Deposition of aerosol particles in the human nose, in Inhaled Particles IV (Walton, W. H. ed.), Pergamon Press, Oxford, pp. 107–126.

    Google Scholar 

  7. Martonen, T. B. and Zhang, Z. (1992) Comments on recent data for particle deposition in human nasal passages. J. Aerosol Sci. 23, 667–674.

    Article  CAS  Google Scholar 

  8. Hahn, I., Scherer, P. W., and Mozell, M. M. (1993) Velocity profiles measured for airflow through a large scale model of the human nasal cavity. J. Appl. Physiol. 75, 2273–2287.

    PubMed  CAS  Google Scholar 

  9. Cheng, K., Cheng, Y., Yeh, H., and Swift, D. L. (1995) Deposition of ultrafine aerosols in the head airways during natural breathing and during simulated breath holding using replicated human upper airway casts. Aerosol Sci. Technol. 23, 465–474.

    Article  CAS  Google Scholar 

  10. Asgharian, B. and Anjivel, S. (1994) Inertial and gravitational deposition of particles in a square cross section bifurcating airway. Aerosol Sci. Technol. 20, 177–193.

    Article  Google Scholar 

  11. Hofmann, W., Balashazy, I., and Koblinger, L. (1995) Effect of gravity on particle deposition patterns in bronchial airway bifurcations. J. Aerosol Sci. 26, 177–193.

    Article  Google Scholar 

  12. Zhang, L., Asgharian, B., and Anjivel, S. (1997) Inertial deposition of particles in the human upper airway bifurcations. Aerosol Sci. Technol. 26, 97–110.

    Article  CAS  Google Scholar 

  13. Martonen, T. B., Musante, C. J., Segal, R. A., Schroeter, J. D., Hwang, D., Dolovich, M., et al. (2000) Lung models: strengths and limitations. Respir. Care 45, 712–736.

    PubMed  CAS  Google Scholar 

  14. Musante, C. J. and Martonen, T. B. (2001) Computational fluid dynamics in human lungs I: effects of natural airway features, in Medical Applications of Computer Modelling: the Respiratory System Martonen, T. B. (ed.), WIT Press, Southampton, UK, pp. 131–145.

    Google Scholar 

  15. Keyhani, K., Scherer, P. W., and Mozell, M. M. (1995) Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117, 429–441.

    PubMed  CAS  Google Scholar 

  16. Subramaniam, R. P., Richardson, R. B., Morgan, K. T., Kimbell, J. S., and Guilmette, R. A. (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10, 91–120.

    Article  CAS  Google Scholar 

  17. Yu, G., Zhang, Z., and Lessmann, R. (1998) Fluid flow and particle diffusion in the human upper respiratory system. Aerosol Sci. Technol. 28, 146–158.

    Article  CAS  Google Scholar 

  18. Schroeter, J. D., Musante, C. J., Hwang, D., Burton, R., Guilmette, R., and Martonen, T. B. (2001) Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Aerosol Sci. Technol. 34, 137–143.

    Article  CAS  Google Scholar 

  19. Martonen, T. B. (1993) Mathematical model for the selective deposition of inhaled pharmaceuticals. J. Pharmaceut. Sci. 82, 1191–1199.

    Article  CAS  Google Scholar 

  20. Mygind, N. (1985) Upper airway: structure, function, and therapy, in Aerosols in Medicine: Principles, Diagnosis, and Therapy Moren, F., Newhouse, M. T., and Dolovich, M. B. (eds.), Elsevier Science Publishing (Biomedical Division), New York, pp. 1–26.

    Google Scholar 

  21. Martonen, T. B., Zhang, Z., and Lessmann, R. C. (1993) Fluid dynamics of the human larynx and upper tracheobronchial airways. Aerosol Sci. Technol. 19, 133–156.

    Article  CAS  Google Scholar 

  22. Katz, I. M., Davis, B. M., and Martonen, T. B. (1999) A numerical study of particle motion within the human larynx and trachea. J. Aerosol Sci. 30, 173–183.

    Article  CAS  Google Scholar 

  23. Katz, I. M. (2001) Computer modeling of fluid dynamics and particle motion in the larynx and trachea, in Medical Applications of Computer Modelling: the Respiratory System, Martonen, T. B., (ed.), WIT Press, Southampton, UK, pp. 47–63.

    Google Scholar 

  24. Martonen, T. B., Yang, Y., and Xue, Z. Q. (1994) Influences of cartilaginous rings on tracheobronchial fluid dynamics. Inhal. Toxicol. 6, 185–203.

    Article  Google Scholar 

  25. Martonen, T. B., Zhang, Z., and Yang, Y. (1997) Particle diffusion from developing flows in rough-walled tubes. Aerosol Sci. Technol. 26, 1–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted B. Martonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martonen, T.B., Zhang, Z., Yu, G. et al. Three-dimensional computer modeling of the human upper respiratory tract. Cell Biochem Biophys 35, 255–261 (2001). https://doi.org/10.1385/CBB:35:3:255

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:35:3:255

Index Entries

Navigation