Skip to main content
Log in

Microarray analysis of selenium-depleted and selenium-supplemented mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nutritional selenium deficiency is associated with Keshan disease in humans and white muscle disease in ruminant livestock. In this study, mice were fed a selenium-deficient diet for three generations. Female mice from the third depleted generation of these mice were given water containing either no added selenium or 0.1 or 1.0 ppm selenium as sodium selenate; DNA microarrays were used to compare gene expression in the muscle from mice fed the selenium diets to that from mice remaining on the depleted diet. The most prominent expression increases were observed with Ptger2 (a prostaglandin E receptor), Tcrb-V13 (a T-cell receptor beta), Tcf-7 (a T-cell transcription factor), and Lck (lymphocyte protein tyrosine kinase), and the major consistent decrease was Vav2, an oncogene in mice consuming the selenium containing diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. F. Combs, Jr., L. C. Clark, and B. W. Turnbull, An analysis of cancer prevention by selenium, Biofactors 14, 153–159 (2001).

    PubMed  CAS  Google Scholar 

  2. U. Schweizer, L. Schomburg, and N. E. Savaskan, The neurobiology of selenium: lessons from transgenic mice, J. Nutr. 134, 707–710 (2004).

    PubMed  CAS  Google Scholar 

  3. F. J. Martin-Romero, G. V. Kryukov, A. V. Lobanov, et al., Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality, J. Biol. Chem. 276, 29,798–29,804 (2001).

    Article  CAS  Google Scholar 

  4. J. R. Arthur, R. C. McKenzie, and G. J. Beckett, Selenium in the immune system, J. Nutr. 133, 1457S-1459S (2003).

    PubMed  CAS  Google Scholar 

  5. P. Chariot and O. Bignani, Skeletal muscle disorders associated with selenium deficiency in humans, Muscle Nerve 27, 662–668 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. K. M. Brown and J. R. Arthur, Selenium, selenoproteins and human health: a review. Public Health Nutr. 4, 593–599 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. J. R. Schubert, O. H. Muth, J. E. Oldfield, and L. F. Remmert, Experimental results with selenium in white muscle disease of lambs and calves. Fed. Proc. 20, 689–694 (1961).

    PubMed  CAS  Google Scholar 

  8. Y. Li, T. Peng, Y. Yang, C. Niu, L.C. Archard, and H. Zhang, High prevalence of enteroviral genomic sequences in myocardium from cases of endemic cardiomyopathy (Keshan disease) in China, Heart 83, 696–701 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. S. D. Cho, C. Jiang, B. Malewicz, et al., Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription, Mol. Cancer Ther. 3, 605–611 (2004).

    PubMed  CAS  Google Scholar 

  10. R. Brigelius-Flohe, A. Banning, M. Kny, and G. F. Bol, Redox events in interleukin-1 signaling Arch. Biochem. Biophys. 423, 66–73 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. R. Xia, H. E. Ganther, A. Egge, and J. J. Abramson, Selenium compounds modulate the calcium release channel/ryanodine receptor of rabbit skeletal muscle by oxidizing functional thiols, Biochem. Pharmacol. 67, 2071–2079 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. M. W. Brown and J. H. Watkinson, An automated fluorometric method for the determination of nanogram quantities of selenium, Anal. Chim. Acta 89, 29–35 (1977).

    Article  CAS  Google Scholar 

  13. M. A. Beilstein and P. D. Whanger, Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins, J. Nutr. 116, 1701–1710 (1986).

    PubMed  CAS  Google Scholar 

  14. M. Mahadevappa and J. A. Warrington, A high-density probe array sample preparation method using 10-to 100-fold fewer cells, Nat. Biotechnol. 17, 1134–1136 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. G. V. Kryukov, S. Castellano, S. V. Novoselov, et al., Characterization of mammalian selenoproteomes, Science 300, 1439–1443 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. R. C. McKenzie, J. R. Arthur, and G. J. Beckett, Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects, Antioxid. Redox Signal. 4, 339–351 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. J. Bai, The combined effect of selenium deficiency and viral infection on the myocardium of mice (preliminary study) (author's transl). Zhongguo Yi Xue Ke Xue Yuan Zue Bao 2, 29–31 (1980) (in Chinese).

    CAS  Google Scholar 

  18. J. E. Oldfield, O. H. Muth, and J. R. Schubert, Selenium and vit. E as related to growth and white muscle disease in lambs, Proc. Soc. Exp. Biol. Med. 103, 799–800 (1960).

    PubMed  CAS  Google Scholar 

  19. J. A. Noble, A. M. White, L. C. Lazzeroni, et al., A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes, Diabetes 52, 1579–1582 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. R. Ramoyska, A. Basson, A. Filby, G. Legname, M. Lovatt, and B. Seddon, The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation, Immunol. Rev. 191, 107–118 (2003).

    Article  Google Scholar 

  21. D. Weichenhan, B. Kunze, S. Zacker, W. Traut, and H. Winking, Structure and e expression of the murine Sp100 nuclear dot gene, Genomics 43, 298–306 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. J. W. Regan, EP2 and EP4 prostanoid receptor signaling, Life Sci 74, 143–153 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. K. Fujikawa, A. V. Miletic, F. W. Alt, et al., Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells, J. Exp. Med. 198, 1595–1608 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. H. Nakamura, T. Kato, T. Yamamura, et al., Characterization of T cell receptor beta chains of accumulating T cells in chronic ongoing myocarditis demonstrated by heterotopic cardiac transplantation in mice, Jpn. Circ. J. 65, 106–110 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. K. K. Hirschi and M. W. Majesky, Smooth muscle stem cells, Anat. Rec. 276A, 22–33 (2004).

    Article  Google Scholar 

  26. T. N. Dear and T. Boehm, Diverse mRNA expression patterns of the mouse calpain genes Capn5, Capn6 and Capn11 during development, Mech. Dev. 89, 201–209 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. L. Rao, B. Puschner, and T. A. Prolla, Gene expression profiling of low selenium status in the mouse intestine: transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress, J. Nutr. 131, 3175–3181 (2001).

    PubMed  CAS  Google Scholar 

  28. M. A. Beck, Selenium and host defence towards viruses, Proc. Nutr. Soc. 58, 707–711 (1999).

    PubMed  CAS  Google Scholar 

  29. J. E. Spallholz, L. M. Boylan, and H. S. Larsen, Advances in understanding selenium's role in the immune system. Ann. N. Y. Acad. Sci. 587, 123–139 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooven, L.A., Butler, J., Ream, L.W. et al. Microarray analysis of selenium-depleted and selenium-supplemented mice. Biol Trace Elem Res 109, 173–179 (2006). https://doi.org/10.1385/BTER:109:2:173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:109:2:173

Index Entries

Navigation