Skip to main content
Log in

Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics, and oxidative stress markers in heat-distressed Japanese quail

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Environmental stress causes adverse effects in performance and antioxidant status of poultry. Dietary chromium supplementation promotes the growth rate and feed efficiency of growing poultry and these beneficial effects of chromium appear to be greater under stress. Biotin, a member of the vitamin B complex, is involved in the metabolism of carbohydrates, fats, and proteins. In a previous experiment, we examined the effects of chromium picolinate (CrPic) as a chromium source in birds subjected to high environmental temperature and the data showed that supplementation with CrPic ameliorated the deletorious effect of stress. The study was conducted to determine the effects of a supplementation of combination of CrPic and biotin (DiachromeTM) on performance, carcass characteristics, levels of oxidative stress markers, serum cholesterol, and glucose concentrations in Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature of 34°C. Two hundred forty Japanese quail (10 d old) were randomly assigned to 8 treatment groups consisting of 10 replicates of 3 birds. The birds were kept in a temperature-controlled room at 22°C (thermo-neutral [TN] groups) or 34°C (for 8h/d; 09.00 am to 05.00 pm; heat-stress [HS] groups). Birds were fed either a basal (control) diet (TN and HS) or the basal diet supplemented with either 1, 2 or 4 mg of Diachrome/kg of diet. Heat exposure decreased performance when the basal diet was fed (p=0.001). Diachrome supplementation increased feed intake (p=0.001), body weight (p=0.05), feed efficiency (p=0.01), and carcass traits (p≤0.05) variables linearly in birds reared under HS conditions. Serum vitamin C (p=0.05) and vitamin E (p=0.03) concentrations increased, whereas malondialdehyde (MDA) levels in serum and the liver (p=0.01), thigh muscle (p=0.05), and serum cholesterol and glucose concentrations (p=0.05) decreased in supplemented birds reared at a high temperature. It should be noted that when birds were kept at the thermo-neutral temperature, Diachrome supplementation did not affect (p>0.05) the variables measured, with the exception of a reduction in serum cholesterol and glucose. Results of the present study suggest that Diachrome can be considered a protective dietary supplement by reducing the negative effects of high environment temperature on performance and oxidative stress in quail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Marsden, T. R. Morris, and A. S. Cromarty, Effects of constant environmental temperatures on the performance of laving pullets, Br. Poult. Sci. 28, 361–380 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. M. A. R. Howlider and S. P. Rose, Temperature and the growth of broilers, World's Poult. Sci. J. 43, 228–237 (1987).

    Article  Google Scholar 

  3. S. Hurwitz, M. Weiselberg, U. Eisner, et al., The energy requirements and performance of growing chickens and turkeys as affected by environmental temperature, Poult. Sci. 59, 2290–2299 (1980).

    CAS  Google Scholar 

  4. NRC, The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC (1997).

    Google Scholar 

  5. J. S. Sands and M. O. Smith, Broilers in heat stress conditions: effects of dietary managanese proteinate or chromium picolinate supplementation, J. Appl. Poult. Res. 8, 280–287 (1999).

    CAS  Google Scholar 

  6. K. Sahin, M. Onderci, N. Sahin, and A. Aydin, Effects of dietary chromium picolinate and ascorbic acid supplementation on egg production, egg quality and some serum metabolities of laying hens reared under a low ambient temperature (6°C), Arch. Anim. Nutr. 56(1), 41–49 (2002).

    Article  CAS  Google Scholar 

  7. K. Sahin, N. Sahin, M. Onderci, M. F. Gursu, and G. Cikim, Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biol. Trace Element. Res. 89(1), 53–64 (2002).

    Article  CAS  Google Scholar 

  8. N. Sahin, M. Onderci, and K. Sahin, Effects of dietary chromium and zinc on egg production, egg quality, and some blood metabolites of laying hens reared under low ambient temperature, Biol. Trace Element Res. 85(1), 47–58 (2002).

    Article  CAS  Google Scholar 

  9. N. Sahin, K. Sahin, M. Onderci, M. Ozcelik, and M. O. Smith, In vivo antioxidant properties of vitamin E and chromium in cold-stressed Japanese qualis, Arch. Anim. Nutr. 57(3), 207–215 (2003).

    Article  CAS  Google Scholar 

  10. R. A. Anderson, Chromium, in Trace Elements in Human and Animal Nutrition, Academic. New York, pp. 225–244 (1987).

    Google Scholar 

  11. D. D. Gallaher, A. S. Csallany, D. W. Shoeman, and J. M. Olson, Diabetes increases excretion of urinary malondehyde conjugates in rats, Lipids 28, 663–666 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. H. G. Preuss, P. L. Grojec, S. Lieberman, and R. A. Anderson Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats, Clin. Nephrol. 47, 325–330 (1997).

    PubMed  CAS  Google Scholar 

  13. S. Okado, H. Tsukada, and H. Ohba, Enhancement of nucleo RNA synthesis by chromium(III) in regenerating rat liver, J. Inorg. Biochem. 21, 113–119 (1984).

    Article  Google Scholar 

  14. W. Mertz, E. W. Toepfer, E. E. Rogniski, and M. M. Polansky, Present knowledge of the role of chromium, Fed. Proc. 33, 2275–2280 (1974).

    PubMed  CAS  Google Scholar 

  15. R. W. Rosebrough and N. C. Steele, Effects of supplemental dietary chromium or nicotinc acid on carbohydrate metabolism during basal, starvation, and refeeding periods in poults, Poult. Sci. 60, 407–417 (1981).

    PubMed  CAS  Google Scholar 

  16. N. C. Steele and R. W. Rosebrought, Effect of trivalent chromium on hepatic lipogenesis by the turkey poult, Poult. Sci. 60, 617–622 (1981).

    PubMed  CAS  Google Scholar 

  17. J. D. Pagan, S. G. Jackson, and S. E. Duren, The effect of chromium supplementation horses on metabolic response to exercise in thoroughbred, in Biotechnology in the Feed Industry: Proceedings of Alltech's Eleventh Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, UK, pp. 249–256 (1995).

    Google Scholar 

  18. R. A. Anderson, Stress effects on chromium nutrition of humans and farm anmals, in Biotechnology in Feed Industry, T. P. Lyons and K. A. Jacques, eds., Nothingham University Press, Nothingam, UK, pp. 267–274 (1994).

    Google Scholar 

  19. A. J. Wright, D. N. Mowat, and B. A. Mallard, Supplemental chromium and bovine repsiratory disease vaccines for stressed feeder calves, Can. J. Anim. Sci. 74, 287–293 (1994).

    Article  CAS  Google Scholar 

  20. D. N. Mowat, Organic chromium. A new nutrient for stressed animals, in Biotechnology in the Feed Industry: Proceedings of Alltech's Tenth Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, UK, pp. 275–282 (1994).

    Google Scholar 

  21. K. Sahin, O. Kucuk, and N. Sahin, Effects of dietary chromium picolinate supplementation on performance, insulin and corticostrerone in laying hans under low ambient temperature, J. Anim. Physiol. Anim. Nutr. 85, 142–147 (2001).

    Article  CAS  Google Scholar 

  22. L. R. McDowell, Vitamins in Animal Nutrition. Comparative Aspects to Human Nutrition. Biotin, L. R. McDowell, ed., Academic, London, chap. 11, pp. 275–297 (1989).

    Google Scholar 

  23. L. J. Machlin, Biotin, in Handbook of Vitamins, 2nd ed. revised and expanded, Marcel Dekker, New York, pp. 393–427 (1991).

    Google Scholar 

  24. J. R. Komorowski, J. De La Harpe, W. T. Cefalu, X. H. Zhang, Z. Q. Wang, and D. Greenberg, JCR:LA-cp rats show improved lipid profiles in response to diets containing chromium picolinate and biotin, Meeting of the Soceity for the Study of Ingestive Behaviour, University of Pennsylvania (Philadelphia), June 26–30, (2001).

  25. Z. Q. Wang, X. H. Zhang, and W. T. Cefalu, Chromium picolinate and biotin enhance glycogen synthesis and glycogen synthase gene expression in human skeletal muscle culture, 17th International Diabetes Federation Congress, Mexico City, November 9, 2000.

  26. N. R. C. Nutrition Requirements of Poultry. National Academy Press, Washington, DC. 1994

    Google Scholar 

  27. K. Sahin, N. Sahin, and O. Kucuk, Effects of dietary chromium and ascorbic acid supplementation on digestion of nutrients, serum antioxidant status and mineral concentratins in laying hens reared at a low ambient temperature, Biol. Trace Element Res. 87, 13–24 (2002).

    Article  Google Scholar 

  28. AOAC, Official Methods of Analysis, 14th ed., Association of Agricultural Chemists. Arlington VA (1990).

    Google Scholar 

  29. SAS Institute, SAS ® User's Guide: Statistic. SAS Institute Inc., Cary, NC (1996).

    Google Scholar 

  30. A. Donkoh, Ambient temperature; a factor affecting performance and physiological response of broiler chickens, Int. J. Biometeorol. 33, 259–265 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. R. E. Austic, Feeding poultry in hot and cold climates, in Stress Physiology in Livestock, Vol. 3, M. K. Yousef, ed., CRC, Boca Raton, FL, pp. 123–136 (1985).

    Google Scholar 

  32. P. A. Geraert, J. C. F. Padilha, and S. Guillaumin, Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: growth performance, body composition and energy retention, Br. J. Nutr. 75, 195–204 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. J. S. Borel, T. C. Majerus, M. Polansky, P. B. Moser, and R. A. Anderson, Chromium intake and urinary chromium exretcion of trauma patients, Biol. Trace Element Res. 6, 317 (1984).

    Article  Google Scholar 

  34. W. Mertz, Chromium in human nutrition: a review, J. Nutr. 123, 626–633 (1993).

    PubMed  CAS  Google Scholar 

  35. R. J. Press, J. Geller, and G. W. Evans, The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects, West. J. Med. 152, 41–45 (1990).

    PubMed  CAS  Google Scholar 

  36. T. Lien, S. Chen, S. Shiau, D. Froman, and C. Y. Hu, Chromium picolinate reduces laying hen serum and egg yolk cholesterol, Profess. Anim. Sci. 12, 77–80 (1996).

    Google Scholar 

  37. G. W. Evans, The effect of chromium picolinate on insulin controlled parameters in humans, Int. J. Biophys. Med. Res. 11, 163–180 (1989).

    Google Scholar 

  38. M. D. Lindemann, C. M. Wood, A. F. Harper, E. T. Kornegay, and R. A. Anderson, Dietary chromium picolinate additions improve gair: feed and carcass characteristics in growing finishing pigs and increase litter size in reproducing sows, J. Anim. Sci. 73, 457–465 (1995).

    PubMed  CAS  Google Scholar 

  39. S. Okado, M. Suzuki, and H. Ohba, Enhancement of ribonucleic acid synthesis by chromium (III) in mouse liver, J. Inorg. Biochem. 19, 95–103 (1983).

    Article  Google Scholar 

  40. J. B. Vincent, The bioinorganic chemisty of chromium (III), Polyhedron 20, 1–26 (2001).

    Article  CAS  Google Scholar 

  41. M. F. McCarty, The case for supplemental chromium and a survey of clinical studies with chromium picolinate, J. Appl. Nutr. 43, 58–66 (1991).

    CAS  Google Scholar 

  42. K. L. Chen, T. F. Lien, and J. J. Lu, Effect of dietary chromium nicotinate on performance, serum traits and carcass characteristics of female turkeys, J. Biomass Energy Soc. China 17, 56–62 (1998).

    CAS  Google Scholar 

  43. T. F. Lien, Y. M. Horng, and K. H. Yang, Growth performance, serum haracteristics, carcass traits and lipid metabolism of broilers as affected by supplement of chromium picolinate, Br. Poult. Sci. 40, 205–211 (1999).

    Article  Google Scholar 

  44. M. C. Linder, Nutrition and metabolism of the trade elements, in Nutritional Biochemistry and Metabolism with Clinical Applications, M. C. Linder, ed., Elsevier, New York. pp. 215–276 (1991).

    Google Scholar 

  45. M. A. Cupo and W. E. Donaldson, Chromium and vanadium effect on glucose metabolism and lipids synthesis in the chick, Poult. Sci. 66, 120–126 (1987).

    PubMed  CAS  Google Scholar 

  46. Y. H. Km, I. K. Han, Y. J. Choi, I. S. Shin, B. J. Chae, and T. H. Kang, Effects of dietary levels of chromium picolinate on growth performance, carcass quality and serum traits in broiler chicks, Asian-Aust. J. Anim. Sci. 9, 341–347 (1996).

    Google Scholar 

  47. D. N. Brindley and A. M. Salter, Hormonal regulation of the hepatic low density lipoprotein: relationship with the secretion of very low density lipoprotein, J. Lipid Res. 30, 349–360 (1991).

    Article  CAS  Google Scholar 

  48. K. Dakshinamurti and C. Cheah-Tan, Biotin-mediated synthesis of hepatic glucokinase in the rat, Arch. Biochem. Biophys. 127, 17–21 (1968).

    Article  PubMed  CAS  Google Scholar 

  49. D. C. Luadicina and L. J. Marnett, Enhancement of hydroperoxide-dependent lipid peroxidation in rat liver microsomes by ascorbic acid, Arch. Biochem. Biophys. 278, 73–80 (1990).

    Article  Google Scholar 

  50. B. Halliwell and J. M. C. Gutteridge, Free radicals in Biology and Medicine, 2nd ed., Oxford University Press, New York (1989).

    Google Scholar 

  51. M. Onderci, N. Sahin, K. Sahin, and N. Kilic, Antioxidant properties of chromium and zinc. In vivo effects on digeastibility, lipid peroxidation, antioxidant vitamins, and some minerals under a low ambient temperature, Biol. Trace Element. Res. 92(2), 139–149 (2003).

    Article  CAS  Google Scholar 

  52. B. Lambert and C. Jacquemin, Inhibition of epinephrine-induced lipolysis in isolated white adipocytes of aging rabbits by increased alpha-adrenergic responsiveness, J. Lipid Res. 20, 208–216 (1979).

    Google Scholar 

  53. A. S. Garfinkel, P. Nilsson-Ehle, and M. C. Schotz, Regula-tion of lipoprotein lipase induction by insulin, Biochem. Biophys. Acta 424, 264–269 (1976).

    PubMed  CAS  Google Scholar 

  54. R. A. Anderson, M. M. Plansky, N. A. Bryden, and J. J. Canary, Supplemental-chromium effects on glucose, insulin, glucagon and uninary chromium losses in subjects consuming controlled low-chromium diets, Am. J. Clin. Nutr. 54, 909–916 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onderci, M., Sahin, K., Sahin, N. et al. Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics, and oxidative stress markers in heat-distressed Japanese quail. Biol Trace Elem Res 106, 165–176 (2005). https://doi.org/10.1385/BTER:106:2:165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:106:2:165

Index Entries

Navigation