Skip to main content
Log in

Mutagenesis and analysis of mold Aspergillus niger for extracellular glucose oxidase production using sugarcane molasses

  • Original Research Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus niger ORS-4.410, a mutant of A. niger ORS-4, was generated by repeated ultraviolet (UV) irradiation. Analysis of the UV treatment dose on wild-type (WT) A. niger ORS-4, conidial survival, and frequency of mutation showed that the maximum frequency of positive mutants (25.5%) was obtained with a 57% conidial survival rate after the second stage of UV irradiation. The level of glucose oxidase (GOX) production from mutant A. niger ORS-4.410 thus obtained was 149% higher than that for WT strain A. niger ORS-4 under liquid culture conditions using hexacyanoferrate (HCF)-treated sugarcane molasses (TM) as a cheaper carbohydrate source. When subcultured monthly for 24 mo, the mutant strain had consistent levels of GOX production (2.62±0.51 U/mL). Mutant A. niger ORS-4.410 was markedly different from the parent strain morphologically and was found to grow abundantly on sugarcane molasses. The mutant strain showed 3.43-fold increases in GOX levels (2.62±0.51 U/mL) using HCF-TM compared with the crude form of cane molasses (0.762±0.158 U/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Witteveen, C. F. B., Vande Vondervoort, P., Swart, K., and Visser, J. (1990) Appl. Microbiol. Biotechnol. 33, 683–686.

    Article  CAS  Google Scholar 

  2. Roehr, M., Kubicek, C. P., and Kominek, J. (1996), in Biotechnology, Product of Primary Metabolism (Rehm, H. J. and Reed, G. eds.), Verlag Chemie, Weinheim, pp. 347–362.

    Google Scholar 

  3. Hatzinikolaou, D.G., Hansen, O.C., Macris, B. T., Tingey, A., Kekos, D., Goodenough, P., and Stougaard, P. (1996), Appl. Microbiol. Biotechnol. 46, 371–381.

    CAS  Google Scholar 

  4. Kiess, M., Hecht, H. J., and Kalisz, H. M. (1998), Eur. J. Biochem., 252, 90–99.

    Article  CAS  Google Scholar 

  5. Park, E. H., Shin, Y. M., Lim, Y.Y., Kwon, T.H., Kim, D.H., and Yang, M. S. (2000), J. Biotechnol. 81, 35–44.

    Article  CAS  Google Scholar 

  6. Liu, J. Z., Hung, Y. Y., Liu, J., Weng, L. P., and Ji, L. N. (2001), Lett. Appl. Microbiol. 32, 16–19.

    Article  CAS  Google Scholar 

  7. Malherbe, D. F., Du Toit, M., Cordero Otero, R. R., van Rensburg, P., and Pretorius, I. S. (2003), Appl. Microbiol. Biotechnol., 61, 502–511.

    CAS  Google Scholar 

  8. Witteveen, C. F. B., Van de Vondervoort, P. J. I., Van den Broeck, H. C., et al. (1993), Curr. Genet. 24, 408–416.

    Article  CAS  Google Scholar 

  9. Petruccioli, M., Piccioni, P., Federict, F., and Polsinelli, M. (1995), FEMS Microbiol. Lett. 128, 107–112.

    Article  CAS  Google Scholar 

  10. Kapat, A., Jung J. K., and Park, Y. H., (1999), Biotechnol. Lett. 20, 683–686.

    Article  Google Scholar 

  11. Kapat, A., Jung, J. K., and Park, Y. H. (2001) J. Appl. Microbiol. 90, 216–222.

    Article  CAS  Google Scholar 

  12. Fiedurek, J., Gromada, A., and Prelecki, J., (1998), Acta Microbiol. Pol. 47, 355–364.

    CAS  Google Scholar 

  13. Kona, R. P., Qureshi, N., and Pai, J. S. (2001) Bioresour. Technol. 78, 123–126.

    Article  CAS  Google Scholar 

  14. Luque, R., Orejas, M., Perotti, N. I., Ramon, D., and Lucca, M. E. (2004), J. Appl. Microbiol. 97, 332–337.

    Article  CAS  Google Scholar 

  15. Singh, O. V. (2000), PhD thesis, Indian Institute of Technology (IIT), (formerly University of Roorkee), Roorkee, India.

  16. Bergmeyer, H. U. (1974), in Methods of Enzymatic Analysis, Bergmeyer, H. U., ed., Academic, New York, pp. 457–460.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  18. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  19. Mann, F. G., and Saunders, B. C. (1960), in Practical Organic Chemistry, 4th ed., Longmans, London, pp. 458–461.

    Google Scholar 

  20. Bagdasaryan, Z. N., Aleksanvan, G. A., Mirzoyan, A. M., Roseiro, J. C., and Bagdasaryan, S. N. (2005), Appl. Biochem. Biotechnol., 125, 113–126.

    Article  CAS  Google Scholar 

  21. Shukla, V. B., Zhou, S., Yomano, L. P., Shanmugam, K. T., Preston, J. F., and Ingram, L. O. (2004), Biotechnol. Lett. 26, 689–693.

    Article  CAS  Google Scholar 

  22. Fiedurek, J. and Ilczuk, Z. (1992), Acta Microbiol. Pol. 41, 179–186.

    CAS  Google Scholar 

  23. Fiedurek, J. and Gromada, A. (2000), J. Appl. Microbiol. 89, 85–89.

    Article  CAS  Google Scholar 

  24. Gromada, A., and Fiedurek, J. (1996), Acta Microbiol. Pol. 45, 37–43.

    CAS  Google Scholar 

  25. Tahoun, M. K. (1993), Appl. Biochem. Biotechnol., 39–40, 289–295.

    Article  Google Scholar 

  26. Markwell, J., Frakes, L. G., Brott, E. C., Osterman, J., and Wagner, F. W. (1989), Appl. Microbiol. Biotechnol. 30, 166–169.

    Article  CAS  Google Scholar 

  27. Ko, J. H., Hahm, M. S., Kang, H. A., Nam, S. W., and Chung, B. H. (2002), Protein Expr. Purif. 25, 488–493.

    Article  CAS  Google Scholar 

  28. Lomkatsi, E. T., Radiami, T. S., Shkolni, A. T., et al. (1990), Acta Biotechnol. 10, 377–381.

    Article  CAS  Google Scholar 

  29. Jefferson, W. R. Jr. (1967), Biochemistry 6, 3479–3484.

    Article  CAS  Google Scholar 

  30. Panda, T., Kundu, S., and Majumdar, S. K., (1984), Microbiol. J. 52, 61–66.

    Google Scholar 

  31. Lu, T., Peng, X., Yang, H., and Ji, L. (1996), Enzyme Microb. Technol., 19, 339–342.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The results reported herein were obtained while the author was working at the Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, O.V. Mutagenesis and analysis of mold Aspergillus niger for extracellular glucose oxidase production using sugarcane molasses. Appl Biochem Biotechnol 135, 43–57 (2006). https://doi.org/10.1385/ABAB:135:1:43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:135:1:43

Index Entries

Navigation