, Volume 3, Issue 3, pp 263-280

Effects of random external background stimulation on network synaptic stability after tetanization

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We constructed a simulated spiking neural network model to investigate the effects of random background stimulation on the dynamics of network activity patterns and tetanus induced network plasticity. The simulated model was a “leaky integrate-and-fire” (LIF) neural model with spike-timing-dependent plasticity (STDP) and frequency-dependent synaptic depression. Spontaneous and evoked activity patterns were compared with those of living neuronal networks cultured on multielectrode arrays. To help visualize activity patterns and plasticity in our simulated model, we introduced new population measures called Center of Activity (CA) and Center of Weights (CW) to describe the spatio-temporal dynamics of network-wide firing activity and network-wide synaptic strength, respectively. Without random background stimulation, the network synaptic weights were unstable and often drifted after tetanization. In contrast, with random background stimulation, the network synaptic weights remained close to their values immediately after tetanization. The simulation suggests that the effects of tetanization on network synaptic weights were difficult to control because of ongoing synchronized spontaneous bursts of action potentials, or “barrages.” Random background stimulation helped maintain network synaptic stability after tetanization by reducing the number and thus the influence of spontaneous barrages. We used our simulated network to model the interaction between ongoing neural activity, external stimulation and plasticity, and to guide our choice of sensory-motor mappings for adaptive behavior in hybrid neural-robotic systems or “hybrots.”