Skip to main content
Log in

A designed glycopeptide array for characterization of sugar-binding proteins toward a glycopeptide chip technology

  • Original Article
  • Published:
NanoBiotechnology

Abstract

For the realization of a practical high-throughput protein detection and analysis system, a novel peptide array has been constructed using a designed glycopeptide model library with an α-helical secondary structure. This study will contribute the increment of the diversity of such an array system and the application to focused proteomics and ligand screening by effective detection of sugar-binding proteins. Fluorescent glycopeptides with an α-helix, a β-strand, or a loop structure were designed initially to select a suitable scaffold for the detection of a model protein. After selection of the α-helical structure as the best scaffold, a small model library with various saccharides was constructed to have charge and hydrophobicity variations in the peptide sequences. When various sugar-binding proteins were added to the peptide library array, the fluorescent peptides showed different responses in fluorescence intensities depending on their sequences as well as saccharides. The patterns of these responses could be regarded as “protein fingerprints” (PFPs), which are able to establish the identities of the target proteins. The resulting PFPs reflected the recognition properties of the proteins. Furthermore, statistical data analysis from obtained PFPs was performed using a cluster analysis. The PFPs of sugar-binding proteins were clustered successfully depending on their families and binding properties. These studies demonstrate that arrays with glycopeptide libraries based on designed structures can be promising tools to detect and analyze the target proteins. Designed peptides with functional groups such as sugars will play roles as the capturing agents of high-throughput protein nano/micro arrays for focused proteomics and ligand screening studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niemeyer, C. M. and Blohm, D. (1999), Angew. Chem. Int. Ed. 38, 2865–2869; Angew. Chem. 111, 3039–3043.

    Article  CAS  Google Scholar 

  2. DeRisi, J. L., Iyer, V. R., and Brown, P. O. (1997), Science 278, 680–686.

    Article  CAS  Google Scholar 

  3. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999), Mol. Cell. Biol. 19, 1720–1730.

    CAS  Google Scholar 

  4. Anderson, N. L. and Anderson, N. G. (1998), Electrophoresis 19, 1853–1861.

    Article  CAS  Google Scholar 

  5. Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., et al. (1996), Proc. Natl. Acad. Sci. USA 93, 14,440–14,445.

    Article  CAS  Google Scholar 

  6. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999), Nat. Biotech. 17, 994–999.

    Article  CAS  Google Scholar 

  7. Natsume, T., Nakayama, H., and Isobe, T. (2001), Trends Biotech. 19 (Suppl.), S28-S33.

    Article  CAS  Google Scholar 

  8. Tomizaki, K., Usui, K., and Mihara, H. (2005), ChemBioChem 6, 782–799.

    Article  CAS  Google Scholar 

  9. MacBeath, G. and Schreiber, S. L. (2000), Science 289, 1760–1763.

    CAS  Google Scholar 

  10. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A. (2000), Anal. Biochem. 278, 123–131.

    Article  CAS  Google Scholar 

  11. Zhu, H. and Snyder, M. (2001), Curr. Opin. Chem. Biol. 5, 40–45.

    Article  CAS  Google Scholar 

  12. Zhu, H., Bilgin, M., Bangham, R., et al. (2001), Science 293, 2101–2105.

    Article  CAS  Google Scholar 

  13. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vöhringer, C. F., and Joos, T. O. (2002), Trends Biotech. 20, 160–166.

    Article  CAS  Google Scholar 

  14. Mitchell, P. (2002), Nat. Biotech. 20, 225–229.

    Article  CAS  Google Scholar 

  15. Wilson, D. S. and Nock, S. (2003), Angew. Chem. Int. Ed. 42, 494–500; Angew. Chem. 115, 510–517.

    Article  CAS  Google Scholar 

  16. Kambhampati, D. (2003), Protein Microarray Technology, Wiley-VCH, Weinheim.

    Google Scholar 

  17. Fung, E. T. (ed.) (2004), Protein Arrays: Methods and Protocols; Humana Press, Totowa, New Jersey.

    Google Scholar 

  18. Zhang, H., Li, X., Martin, D. B., and Aebersold, R. (2003), Nat. Biotech. 21, 660–666.

    Article  CAS  Google Scholar 

  19. Murray, J., Marusich, M. F., Capaldi, R. A., and Aggeler, R. (2004), Electrophoresis 25, 2520–2525.

    Article  CAS  Google Scholar 

  20. Takahashi, M., Nokihara, K., and Mihara, H. (2003), Chem. Biol. 10, 53–60.

    Article  CAS  Google Scholar 

  21. Usui, K., Takahashi, M., Nokihara, K., and Mihara, H. (2004), Molecular Diversity 8, 209–218.

    Article  CAS  Google Scholar 

  22. Usui, K., Ojima, T., Takahashi, M., Nokihara, K., and Mihara, H. (2004), Biopolymers 76, 129–139.

    Article  CAS  Google Scholar 

  23. Houseman, B. T. and Mrksich, M. (2002), Chem. Biol. 9, 443–454.

    Article  CAS  Google Scholar 

  24. Park, S., Lee, M., Pyo, S.-J., and Shin, I. (2004), J. Am. Chem. Soc. 126, 4812–4819.

    Article  CAS  Google Scholar 

  25. Ratner, D. M., Adams, E. W., Su, J., O’Keefe, B. R., Mrksich, M., and Seeberger, P. H. (2004), ChemBioChem 5, 379–383.

    Article  CAS  Google Scholar 

  26. Chan, W. C. and White, P. D. (2000), Fmoc Solid Phase Peptide Synthesis: a Practical Approach, Oxford University Press, New York.

    Google Scholar 

  27. Meinjohanns, E., Meldal, M., Paulsen, H., Dwek, R. A., and Bock, K. (1998), J. Chem. Soc. Perkin Trans. 1, 549–560.

    Article  Google Scholar 

  28. Vetter, D. and Gallop, M. A. (1995), Bioconjugate Chem. 6, 316–318.

    Article  CAS  Google Scholar 

  29. Wahler, D., Badalassi, F., Crotti, P., and Reymond, J. L. (2002). Chem. Eur. J. 8, 3211–3228.

    Article  CAS  Google Scholar 

  30. Goddard, J. P. and Reymond, J. L. (2004), J. Am. Chem. Soc. 126, 11,116, 11,117.

    Article  CAS  Google Scholar 

  31. Grognux, J. and Reymond, J. L. (2004), ChemBioChem 5, 826–831.

    Article  CAS  Google Scholar 

  32. http://aoki2.si.gunma-u.ac.jp/lecture/stats-by-excel/vba/html/clustan.html (Japanese).

  33. Muraki, M., Ishimura, M., and Harata, K. (2002), Biochem. Biophys. Acta 1569, 10–20.

    CAS  Google Scholar 

  34. Yamamoto, K., Tsuji, T., Matsumoto, I., and Osawa, T. (1981), Biochemistry 20, 5894–5899.

    Article  CAS  Google Scholar 

  35. Gallagher, J. T., Morris, A., and Dexter, T. M. (1985), Biochem. J. 231, 115–122.

    CAS  Google Scholar 

  36. Wright, C. S. (1987), J. Mol. Biol. 194, 501–529.

    Article  CAS  Google Scholar 

  37. Kuwabara, T., Nakamura, A., Ueno, A., and Toda, F. (1994), J. Phys. Chem. 98, 6297–6303.

    Article  CAS  Google Scholar 

  38. Greenfield, N. and Fasman, G. D. (1969), Biochemistry 8, 4108–4116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisakan Mihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, K., Jong, T., Toioki, Ky. et al. A designed glycopeptide array for characterization of sugar-binding proteins toward a glycopeptide chip technology. Nanobiotechnol 1, 191–199 (2005). https://doi.org/10.1385/NBT:1:2:191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NBT:1:2:191

Key Words

Navigation