, Volume 22, Issue 1-3, pp 167-179

Components of astrocytic intercellular calcium signaling

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


It has become evident that astrocytes play major roles in central nervous system (CNS) function. Because they are endowed with ion channels, transport pathways, and enzymatic intermediates optimized for ionic uptake, degradation of metabolic products, and inactivation of numerous substances, they are able to sense and correct for changes in neural microenvironment. Besides this housekeeping role, astrocytes modulate neuronal activity either by direct communication through gap junctions or through the release of neurotransmitters and/or nucleotides affecting nearby receptors. One prominent mode by which astrocytes regulate their own activity and influence neuronal behavior is via Ca2+ signals, which may be restricted within one cell or be transmitted throughout the interconnected syncytium through the propagation of intercellular calcium waves. This review aims to outline the most recent advances regarding the active communication of astrocytes that is encoded by intracellular calcium variation.