, Volume 19, Issue 3, pp 249-256

A model for tissue-specific inducible insulin-like growth factor-I (IGF-I) inactivation to determine the physiological role of liver-derived IGF-I

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Insulin-like growth factor-I (IGF-I) has important growth-promoting and metabolic effects and is expressed in virtually every tissue of the body. The highest expression is found in the liver, but the physiological role of liver-derived IGF-I is unknown. It has been difficult to separate the endocrine effects of liver-derived IGF-I from the autocrine/paracrine effects of locally produced IGF-I in peripheral tissues. Therefore, we have developed a mouse model with a liver-specific inducible deletion of the IGF-I gene (LI-IGF-I-/- mouse). The LI-IGF-I-/- mouse has dramatically reduced (>80%) serum IGF-I levels, demonstrating that the major part of serum IGF-I is liver-derived. Surprisingly, LI-IGF-I-/-mice demonstrate a normal appendicular skeletal growth up to at least 12 mo of age despite the dramatic decrease in circulating IGF-I levels, indicating that liver-derived IGF-I is not required for appendicular skeletal growth. However, the adult axial skeletal growth is reduced in the LI-IGF-I-/- mice. Furthermore, the amount of cortical bone is reduced due to decreased radial growth of the cortical bone, while the trabecular bone mineral density is unchanged in the LI-IGF-I-/-mice. The decreased levels of circulating IGF-I are associated with increased serum levels of growth hormone (GH), indicating a role for liver-derived IGF-I in the negative-feedback regulation of GH secretion. Measurements of factors regulating GH secretion in the pituitary and in the hypothalamus revealed an increased expression of GH-releasing-hormone (GHRH) and GH-secretagogue (GHS) receptors in the pituitary of LI-IGF-I-/-mice. This in turn results in an increased sensitivity to systemically administered GHRH and GHS, demonstrating that the regulatory action of liver-derived IGF-I on GH secretion is at the pituitary rather than at the hypothalamic level. The liver is an important metabolic organ and LI-IGF-I-/- mice are markedly hyperinsulinemic and yet normoglycemic, consistent with an adequately compensated insulin resistance. Interestingly, LI-IGF-I-/- mice display a reduced age-dependent fat mass accumulation compared with control mice. Furthermore, LI-IGF-I-/- mice have increased blood pressure attributable to increased peripheral resistance indicating a role for liver-derived IGF-I in the regulation of blood pressure. In conclusion, liver-derived IGF-I is important for carbohydrate and lipid metabolism and for the regulation of GH secretion at the pituitary level. Furthermore, it regulates adult axial skeletal growth and cortical radial growth while it is not required for appendicular skeletal growth.