Skip to main content
Log in

Increased content of zinc and iron in human cataractous lenses

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of the study was to examine the zinc and iron content of human lenses in different types of cataract and to investigate the possible influence of diabetes on the zinc and iron content of the lens. Iron and zinc of 57 human lenses (28 corticonuclear cataracts and 29 mature cataracts with a mean age of 70.6±16.1 and 74.7±11.1 yr, 41 nondiabetics and 16 diabetics) were determined by atomic absorption spectroscopy. The zinc content of human lenses was significantly increased in mature cataracts compared to corticonuclear cataracts (0.51±0.33 vs 0.32±0.20 µmol/g dry mass, p=0.012). The iron content of mature cataracts was also higher than in corticonuclear cataracts (0.11±0.09 vs 0.07±0.05 µmol/g dry mass, p=0.071). Furthermore, a significant increase of the lens zinc content could be observed with increasing lens coloration (light brown 0.33±0.17 vs dark brown 0.52±0.35 µmol/g dry mass, p=0.032). Diabetic patients seem to have both increased zinc and iron contents in the lens compared to nondiabetic subjects (zinc: 0.45±0.42 vs 0.40±0.22 µmol/g dry mass; iron: 0.12±0.10 vs 0.08±0.05 µmol/g dry mass). These data suggest a possible influence of the lens zinc and iron content on the development of lens opacification. Especially advanced forms of cataract and dark brown colored lenses show significantly increased zinc and iron content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kupfer, B. Underwood, and T. Gillen, Leading causes of visual impairment worlwide, in Principles and Practice of Ophthalmology Basic Science (D. M. Albert and F. A. Jakobiec, eds.), W.B. Saunders, Philadelphia (1984).

    Google Scholar 

  2. A. J. Bron, J. Sparrow, N. A. P. Brown, J. J. Harding, and R. Blakytny, The lens in diabetes, Eye 7, 260–275 (1993).

    PubMed  Google Scholar 

  3. J. J. Harding, Cataract, Biochemistry, Epidemiology and Pharmacology, Chapman & Hall, London (1991).

    Google Scholar 

  4. M. H. Garner and A. Spector, Selective oxidation of cysteine and methioneine in normal and senile cataractous lenses, Proc. Natl. Acad. Sci. USA 77, 1274–1277 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. S. Fu, R. T. Dean, M. Southan, and R. J. W. Truscott, The hydroxyl radical in lens nuclear cataractogenesis, J. Biol. Chem. 273, 28,603–28,609 (1998).

    CAS  Google Scholar 

  6. B. Garner, M. J. Davies, and R. J. W. Truscott, Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract, Exp. Eye Res. 70, 81–88 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. D. Garland, Role of site specific, metal-catalyzed oxidation in lens ageing and cataract, Exp. Eye Res. 50, 677–682 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. B. Vallee and D. Auld, Zinc coordination, function and structure of zinc enzymes and other proteins, J. Am. Chem. Soc. 29, 5647–5659 (1990).

    CAS  Google Scholar 

  9. A. S. Prasad, Clinical and biochemical manifestation of zinc deficiency in human subjects, J. Am. Coll. Nutr. 4, 591–598 (1985).

    PubMed  CAS  Google Scholar 

  10. B. Garner, K. Roberg, M. Qian, J. W. Eaton, and R. J. W. Truscott, Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses, Exp. Eye Res. 71, 599–607 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. G. Duncan and R. Bushell, Ion analysis of human cataractous lenses, Exp. Eye Res. 20, 223–230 (1975).

    Article  PubMed  CAS  Google Scholar 

  12. C. D. Eckhert, Elemental concentrations in ocular tissues of various species, Exp. Eye Res. 37, 639–647 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. V. K. Srivastava, N. Varshney, and D. C. Padney, Role of trace elements in senile cataract, Acta Ophthalmol. 70, 839–841 (1992).

    CAS  Google Scholar 

  14. B. Garner, K. Roberg, M. Qian, U. T. Brunk, J. W. Eaton, and R. J. W. Truscott, Redox availability of lens iron and copper implications for hydroxyl radical generation in cataract, Redox Rep. 4, 313–315 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. D. J. Rhee and M. F. Pyfer, The Wills Eye Manual, 3rd ed., Lippincott Williams & Wilkins, Philadelphia (1999).

    Google Scholar 

  16. T. Nabekura, T. Minami, R. Hirunuma, S. Enomoto, R. Hori, and Y. Ito, Comparative uptake behavior of trace elements in adult and suckling rat lenses, Toxicology 163, 101–105 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. O. Cekic, Y. Bardak, Y. Totan, S. Kavakli, O. Akyol, O. Ozdemir, et al., Nickel, chromium, manganese, iron and aluminium levels in human cataractous and normal lenses, Ophthalmic Res. 31, 332–336 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. J. S. Fabe, B. H. Grahn, and P. G. Paterson, Zinc concentration of selected ocular tissues in zinc-deficient rats, Biol. Trace Element Res. 75, 43–52 (2000).

    Article  CAS  Google Scholar 

  19. V. Rasi, S. Costantini, R. Moramarco, R. Giordano, R. Giustolisi, and C. B. Gabrieli, Inorganic element concentrations in cataractous human lenses, Ann. Ophthalmol. 24, 459–464 (1992).

    PubMed  CAS  Google Scholar 

  20. V. K. Srivastava, N. Vashney, and D. C. Padney, Role of trace elements in senile cataract, Acta Ophthalmol. 70, 839–841 (1992).

    CAS  Google Scholar 

  21. V. K. Srivastava, N. Chaturvedi, M. Garg, Z. Maq, and D. C. Padney, Copper and zinc in human senile cataract, Curr. Sci. 57, 1288 (1988).

    Google Scholar 

  22. J. H. Kinoshita, Mechanism initiating cataract formation, Invest. Ophthalmol. 13, 713–724 (1974).

    PubMed  CAS  Google Scholar 

  23. S. S. Ahmad, K. C. Tsou, S. I. Ahmad, M. A. Rahmann, and T. H. Kirmani, Studies on cataractogenesis in humans and in rats with alloxan-induced diabetes, Ophthalmic Res. 17, 1–11 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. G. N. Pierce, N. Afzal, E. A. Kroeger, M. K. Lockwood, M. J. B. Kutryk, C. D. Eckhert, et al., Cataract formation is prevented by administration of verapamil to diabetic rats, Endocrinology 125, 730–735 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. O. Cekic and Y. Bardak, Lenticular calcium, magnesium and iron levels in diabetic rats and verapamil effect, Ophthalmic Res. 30, 107–112 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. A. S. Duhaiman, N. Rabbani, and E. Cotlier, Camel lens crystallin glycosylation and high molecular weight aggregate formation in the presence of ferrous ions and glucose, Biochem. Biophys. Res. Commun. 173, 823–832 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. P. Saxena, A. Saxena, X. Cui, M. Obrenovich, K. Gudipaty, and V. M. Monnier, Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products, Invest. Ophthalmol. Vis. Sci. 41, 1473–1481 (2000).

    PubMed  CAS  Google Scholar 

  28. S. Franke, J. Dawczynski, M. Blum, J. Strobel, and G. Stein, Levels of advanced glycation end-products (AGEs) in human cataractous lenses, Exp. Clin. Endocrinol. Diabetes 108, A2–A3 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawczynski, J., Blum, M., Winnefeld, K. et al. Increased content of zinc and iron in human cataractous lenses. Biol Trace Elem Res 90, 15–23 (2002). https://doi.org/10.1385/BTER:90:1-3:15

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:90:1-3:15

Index Entries

Navigation