Skip to main content
Log in

Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was conducted to determine the effects of chromium (chromium picolinate, CrPic) supplementation at various levels (0, 200, 400, 800, or 1200 µ/kg of diet) on performance, carcass characteristics, and some serum metabolites of broiler chickens (Ross) reared under heat stress (32.8°C). One hundred fifty old male broilers were randomly assigned to 5 treatment groups, 3 replicates of 10 birds each. The birds were fed either a control diet or the control diet supplemented with either 200, 400, 800, or 1200 µg Cr/kg of diet. Increased supplemental chromium resulted in an increase in body weight (p=0.01, linear), feed intake (p≤0.05, linear), and carcass characteristics (p≤0.05, linear) and improved feed efficiency (p=0.01, linear). Increased supplemental chromium decreased serum corticosterone concentration (p=0.01, linear), whereas it increased serum insulin and T3 and T4 concentrations (p=0.01). Serum glucose and cholesterol concentrations decreased (p=0.01), whereas protein concentrations increased linearly (p=0.001) with higher dietary chromium supplementation. Results of the present study conclude that a supplementation of diet with chromium at 1200 ppb can alleviate the detrimental effects of heat stress in broiler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Donkoh, Ambient temperature: a factor affecting performance and physiological response of broiler chickens, Int. J. Biometeorol. 33, 259–265 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. H. S. Siegel, Stress, strains and resistance, Br. Poult. Sci. 36, 3–20 (1995)

    PubMed  CAS  Google Scholar 

  3. S. Hurwitz, M. Weiselberg, U. Eisner, I. Bartov, G. Riesenfeld, M. Sharvit, et al., The energy requirements and performance of growing chickens and turkeys, as affected by environmental temperature, Poult. Sci. 59, 2290–2299 (1980).

    CAS  Google Scholar 

  4. S. E. Evans and D. L. Ingram, The effect of ambient temperature upon the secretion of thyroxine in the young pig, J. Physiol. 264, 511–519 (1977).

    PubMed  CAS  Google Scholar 

  5. S. J. Bowen and S. J. Washburn, Thyroid and adrenal response to heat stress in chickens and quail differing in heat tolerance, Poult. Sci. 64, 149–154 (1985).

    PubMed  CAS  Google Scholar 

  6. F. M. A. McNabb and D. B. King, Thyroid hormones effect on growth development and metabolism, in The Endocrinology of Growth Development and Metabolism in Vertebrates, T. Schreibman et al., eds., Academic Press, NY, Zoological Science Vol. 10, pp. 873–885 (1993).

    Google Scholar 

  7. R. W. Heninger, W. S. Newcorner, and R. H. Thayer, The effect of elevated ambient temperatures and the thyroxine secretion rate of chickens, Poult. Sci. 39, 1332–1337 (1960).

    CAS  Google Scholar 

  8. S. J. Bowen, S. J. Washburn, and T. M. Huston, Involvement of the thyroid gland in the response of the young chicken to heat stress, Poult. Sci. 63, 66–69 (1984).

    PubMed  CAS  Google Scholar 

  9. P. E. Hilmann, N. R. Scott, and A. Van Tienhoven, Physiological responses and adaptations to hot and cold environments, in Stress Physiology in Livestock, M.K. Yousef, ed., CRC Press, Boca Raton, FL, pp. 1–71 (1985).

    Google Scholar 

  10. F. W. Edens, and H. S. Siegel, Adrenal responses in high and low ACTH response lines of chickens during acute heat stress, Gen. Comp. Endocrinol. 25, 64–73 (1975).

    Article  PubMed  CAS  Google Scholar 

  11. M. E. Ensminger, J. E. Oldfield, and W. Heinemann, Feeds and Nutrition, Ensminger, pp. 108–110 (1990).

  12. R. A. Anderson, Chromium. Trace Elements in Human and Animal Nutrition, Academic, New York, pp. 225–244 (1987).

    Google Scholar 

  13. R. A. Anderson, Stress effects on chromium nutrition of humans and farm animals, in Biotechnology in Feed Industry, T. P. Lyons, and K. A. Jacques, eds., Nottingham. University Press, Nothingam, pp. 267–274 (1994).

    Google Scholar 

  14. M. O. Smith and R. G. Teeter, Potassium balance of the 5 to 8-week old broiler exposed to constant heat or cycling high temperature stress and the effects of supplemental potassium chloride on body weight gain and feed efficiency, Poult. Sci. 66, 487–492 (1987).

    PubMed  CAS  Google Scholar 

  15. O. El Husseiny and C. R. Creger, Effect of ambient temperature on mineral retention and balance of the broiler chicks, Poult. Sci. 60 (Suppl. 1), 1651 (1981) (abstract).

    Google Scholar 

  16. N. Sahin, M. Onderci, and K. Sahin, Effects of dietary chromium and zinc on egg production, egg quality and some blood metaboites of laying hens reared under low ambient temperature, Biol. Trace Element Res., in press.

  17. K. Sahin, O. Kucuk, and N. Sahin, Effects of dietary chromium picolinate supplementation on performance, insulin and corticostrerone in laying hens under low ambient temperature, J. Anim. Physiol. Anim. Nutr. 85, 142–147 (2001).

    Article  CAS  Google Scholar 

  18. K. Sahin, O. Kucuk, N. Sahin, and O. Ozbey, Effects of dietary chromium picolinate supplementation on egg production, egg quality, and serum concentrations of insulin, corticostrerone and some metabolites of Japanese quails, Nutr. Res. 21, 1315–1321 (2001).

    Article  CAS  Google Scholar 

  19. D. D. Gallaher, A. S. Csallany, D. W. Shoeman, and J. M. Olson, Diabetes increases excretion of urinary malondehyde cojugates in rats, Lipids 28, 663–666 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. H. G. Preuss, P. L. Grojec, S. Lieberman, and R. A. Anderson, Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats, Clin. Nephrol. 47(5), 325–330 (1997).

    PubMed  CAS  Google Scholar 

  21. S. Okado, H. Tsukada, and H. Ohba, Enhancement of nucleolar RNA synthesis by chromium(III) in regenerating rat liver, J. Inorg. Biochem. 21, 113–116 (1984).

    Article  Google Scholar 

  22. M. C. Linder, Nutrition and metabolism of the trace elements, in Nutritional Biochemistry and Metabolism with Clinical Applications, M. C. Linder, ed., Elsevier, New York, pp. 215–276 (1991).

    Google Scholar 

  23. R. J. Doisy, Effect of nutrient deficiencies in animals; chromium, in CRC Handbook Series in Nutrition and Food. Section E: Nutritional Disorders Vol: 2 Effect of Nutrient Deficiencies in Animals, M. Rechcigi, Jr., ed., CRC West Palm Beach, FL, pp. 341–342, (1978).

    Google Scholar 

  24. J. D. Pagan S. G. Jackson, and S. E. Duren, The effect of chromium supplementation on metabolic response to exercise in thoroughbred horses, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Eleventh Annual Symposium. Lyons, T. P. Jacques and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 249–256 (1995).

    Google Scholar 

  25. D. N. Mowat, Organic chromium. A new nutrient for stressed animals. In Biotechnology in the Feed Industry: Proceedings of Alltech’s Tenth Annual Symposium. Lyons, T. P. Jacques and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 275–282 (1994).

    Google Scholar 

  26. NRC, The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC (1997).

    Google Scholar 

  27. T. F. Lien, Y. M. Horng, and K. H. Yang. Performance, serum characteristics, carcass traits and lipid metabolism of broilers as affected by supplement of chromium picolinate, Br. Poult. Sci. 40(3), 357–361 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. NRC, Nutrient Requirements of Poultry, 9th rev. ed., National Academy Press, Washington, DC (1994).

    Google Scholar 

  29. J. P. McMurtry, R. V. Rosebrough, and N. C. Steele, An homologous radioimmunoassay for chicken insulin, Poult. Sci. 62, 697–701 (1983).

    PubMed  CAS  Google Scholar 

  30. X. Chang, D. N. Mowat, and G. A. Spiers. Carcass characteristics and tissue-mineral contents of steers fed supplemental chromium, Can. J. Anim. Sci. 72, 663–668 (1992).

    Article  CAS  Google Scholar 

  31. AOAC, Official Methods of Analysis Association of Agricultural Chemists, Washington DC (1990).

  32. SAS Institute, SAS® User’s Guide: Statistics, SAS Institute Inc., Cary, NC (1996).

    Google Scholar 

  33. J. S., Borel, T. C., Majerus, M., Polansky, P. B., Moser, and R. A. Anderson. Chromium intake and urinary chromium excretion of trauma patients, Biol. Trace Element Res. 6, 317–321 (1984).

    Article  Google Scholar 

  34. J. S. Sands and M. O. Smith, Broilers in heat stress conditions: effects of dietary manganese proteinate or chromium picolinate supplementation, J. Appl. Poult. Res. 8, 280–287 (1999).

    CAS  Google Scholar 

  35. N. C. Steele and R. W. Rosebrough, Effect of trivalent chromium on hepatic lipogenesis by the turkey poult, Poult. Sci. 60, 617–622 (1981).

    PubMed  CAS  Google Scholar 

  36. C. H. Lukaski, Chromium as a supplement, Annu. Rev. Nutr. 19, 279–302 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. K. W. Mooney and G. L. Cromwell, Efficacy of Chromium picolinate and chromium chloride as potential carcass modifiers in swine, J. Anim. Sci. 73, 3351–3357 (1997).

    Google Scholar 

  38. M. D. Lindeman, Organic chromium: The missing link in farm animal nutrition, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Twelfth Annual Symposium. Lyons, T. P. Jacgues and K. A. Jacques, eds., Nottingham University Press, Nottingham, pp. 299–314 (1996).

    Google Scholar 

  39. U. Weser and U. J. Koolman. Untersuchungen zur proteinbiosynthese in Rattenieberzellerkernen, Hoppe Seyler’s Z. Physiol. Chem. 350, 1273–1278 (1969).

    PubMed  CAS  Google Scholar 

  40. S. Okado, M. Suzuki, and H. Ohba, Enhancement of ribonucleic acid synthesis by chromium (III) in mouse liver, J. Inorg. Biochem. 19, 95–103 (1983).

    Article  Google Scholar 

  41. J. B. Vincent, The biochemistry of chromium, J. Nutr. 130, 715–718 (2000).

    PubMed  CAS  Google Scholar 

  42. J. B. Vincent, The bioinorganic chemistry of chromium (III), Polyhedron, 20(1–2), 1–26 (2001).

    Article  CAS  Google Scholar 

  43. J. D. May, J. W. Deaton, F. N. Reece, and S. L. Branton. Effect of acclimation and heat stress on thyroid hormone concentration, Poult. Sci. 65, 1211–1213 (1986).

    PubMed  CAS  Google Scholar 

  44. A. Iqbal, E. Decuypere, El. A. Abd Azim, and El. A. E. R. Kühn, Pre- and post-hatch high temperature exposure affects the thyroid hormones and corticostrenone responses to acute heat stress in growing chicken (Gallus domestica), J. Thermal Biol. 15, 149–153 (1990).

    Article  CAS  Google Scholar 

  45. S. Yahav, A. Straschnow, I. Plavnik, and S. Hurwitz, Blood system response of chickens to changes in environmental temperature, Poult. Sci. 76, 627–633 (1997).

    PubMed  CAS  Google Scholar 

  46. S. Yahav, The effect of constant and diurnal cyclic temperatures on performance and blood system of young turkeys, J. Thermal Biol. 24, 71–78 (1999).

    Article  Google Scholar 

  47. T. M. Huston and J. L. Carmon, The influence of high environmental temperature on thyroid size of domestic fowl, Poult. Sci. 41, 175–183 (1962).

    Google Scholar 

  48. W. P. Jonier and T. M. Huston, The influence of high environmental temperature on immature domestic fowl, Poult. Sci. 36, 973–978 (1957).

    Google Scholar 

  49. R. W. Rosebrough and N. C. Steele, Effect of supplemental dietary chromium or nicotic acid on carbonhydrate metabolism during basal, starvation and refeeding periods in poults, Poult. Sci. 60, 407–411 (1981).

    PubMed  CAS  Google Scholar 

  50. T. G. Page, L. L. Southern, T. L. Ward, and D. L. Thompson, Jr., Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pigs, J. Anim. Sci. 71, 656–670 (1993).

    PubMed  CAS  Google Scholar 

  51. J. L. Burton, B. A. Mallard, and D. N. Mowat. Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows, J. Anim. Sci. 71, 1532–1536 (1993).

    PubMed  CAS  Google Scholar 

  52. K. Sahin, K. N. Şahin, and N. Erkal, Tavşanlarda Basal Rasyona Krom İlavesinin Glikoz, İnsulin, Kortizol ve Alkali Fosfataz Düzeyleri ile Besi Performansi Üzerine Etkisi, Turk. J. Vet. Anim. Sci. 21, 147–153 (1997).

    Google Scholar 

  53. X. Chang and D. N. Mowat. Supplemental chromium for stressed and growing feeder calves, J. Anim. Sci. 70, 559–567 (1992).

    PubMed  CAS  Google Scholar 

  54. S. Moonsie-Shager and D. N. Mowat. Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves, J. Anim. Sci. 71, 232–240 (1993).

    Google Scholar 

  55. M. Colgan, Chromium boosts insulin efficiency, in Optimum Sports Nutrition, Advanced Research, New York, pp. 313–320 (1993).

    Google Scholar 

  56. M. A. Cupo and W. E. Donaldson, Chromium and vanadium effects on glucose metabolism and lipid synthesis in the chick, Poult. Sci. 66, 120–126 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, K., Sahin, N., Onderci, M. et al. Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens. Biol Trace Elem Res 89, 53–64 (2002). https://doi.org/10.1385/BTER:89:1:53

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:89:1:53

Index Entries

Navigation