Skip to main content
Log in

Effects of dietary combination of chromium and biotin on egg production, serum metabolites, and egg yolk mineral and cholesterol concentrations in heat-distressed laying quails

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium picolinate is used in the poultry diet because of its antistress effects in addition to the fact that the requirement for it is increased during stress. This study was conducted to determine if the negative effects of high ambient temperature (34°C) on egg production, egg quality, antioxidant status, and cholesterol and mineral content of egg yolk could be alleviated by combination of chromium picolinate and biotin (0.6/2.0; Diachrome, as formulated by Nutrition 21 Inc.), in laying Japanese quails (Coturnix coturnix japanica), Quails (n=240; 50 d old) were divided into 8 groups, 30 birds per group. The quails were fed either a basal diet or the basal diet supplemented with 2, 4, or 8 mg of Diachrome/kg diet. Birds were kept at 22°C and 53% relative humidity (RH). At 14 wk of age, the thermoneutral (TN) group remained in the same temperature as at the beginning of experiment, whereas the heat stress (HS) group was kept in an environment-controlled room (34°C and 41% RH) for 3 wk. Heat exposure decreased performance when the basal diet was fed (p=0.001). Diachrome supplementation at 4 and 8 mg/kg diet, increased feed intake (p=0.05), egg production (p=0.05), feed efficiency (p=0.01), egg weight (p=0.05), and Haugh unit (p=0.01) in quails reared under heat stress conditions. Heat exposure increased concentrations of serum malondialdehyde (MDA) (p=0.001), glucose, and cholesterol (p=0.01), which were elevated by supplemental Diachrome (p≤0.05). Egg yolk Cr, Zn, and Fe (p=0.01) concentrations increased linearly, whereas MDA and cholesterol concentrations decreased (p=0.05) as dietary Diachrome supplementation increased in HS groups. Similar effects of supplementation on serum levels of glucose and cholesterol (p=0.05) and egg yolk concentrations of cholesterol (p=0.05) and Cr (p=0.01) were observed in TN groups. No significant differences in other values were observed in the TN groups. Results of the present study suggest that supplementation with Diachrome protects the quail by reducing the negative effects of heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Smith and O. Oliver, some nutritional problems associated with egg production at high environmental temperatures. I. The effect of environmental temperature and rationing treatments in the productivity of pullets fed on diets of differing energy content, Rhod. J. Agric. Res. 10, 3–20 (1972).

    Google Scholar 

  2. D. Wolfenson, Y. F. Feri, N. Snapir, and A. Berman, Effect of diurnal or nocturnal heat stress on egg formation, Br. Poult. Sci. 20, 167–74 (1979).

    PubMed  CAS  Google Scholar 

  3. A. Donkoh, Ambient temperature: a factor affecting performance and physiological response of broiler chickens, Int. J. Biometeorol. 33, 259–265 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. K. Sahin and O. Kucuk, Heat stress and dietary vitamin supplementation of poultry diets, Nutr. Abstr. Rev. B. Livestock Feeds Feeding, 73, 41R-50R (2003).

    Google Scholar 

  5. M. V. Borisiuk and V. Zinchuk, Analysis of the relationship between hemoglobin-oxygen affinity and lipid peroxidation during fever, Acta Biochem. Polon. 42, 69–74 (1995).

    CAS  Google Scholar 

  6. Y. Iwagami, Changes in the ultrastructure of human cells related to certain biological responses under hyperthermic culture conditions, Hum. Cell. 9, 353–366 (1996).

    PubMed  CAS  Google Scholar 

  7. L. R. McDowell, Vitamins in animal nutrition, in Comparative Aspects to Human Nutrition; Vitamin C. L. R. Mc Dowell, ed., Academic, London, pp. 365–387 (1989).

    Google Scholar 

  8. D. N. Mowat, Organic chromium. A new nutrient for stressed animals, Biotechnology in the Feed Industry: Proceedings of Alltech’s Tenth Annual Symposium, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nottingham, UK, pp. 275–282 (1994).

    Google Scholar 

  9. K. Sahin, M. Onderci, N. Sahin, and S. Aydin, Effects of dietary chromium picolinate and ascorbic acid supplementation on egg production, egg quality and some serum metabolites of laying hens reared under a low ambient temperature (6 degrees C), Arch. Anim. Nutr. 56, 41–49 (2002).

    Article  CAS  Google Scholar 

  10. K. Sahin, N. Sahin, M. Onderci, M. F. Gursu, and G. Cikim, Optimal dietary concentration of chromium for alleviating the effect of heat stress on growth, carcass qualities, and some serum metabolites of broiler chickens, Biol. Trace Element Res. 89, 53–64 (2002).

    Article  CAS  Google Scholar 

  11. N. Sahin, M. Onderci, and K. Sahin, Effects of Dietary chromium and zinc on egg production, egg quality and some blood metabolites of laying hens reared under low ambient temperature, Biol. Trace Element Res. 85, 47–58 (2002).

    Article  CAS  Google Scholar 

  12. R. J. Doisy, Effect of nutrient deficiencies in animals; chromium in CRC Handbook Series in Nutrition and Food. Section E: Nutritional Disorders, Vol. 2. Effect of Nutrient Deficiencies in Animals, M. Rechcigi, Jr., ed., CRC, West Palm Beach, FL, pp. 341–342 (1978).

    Google Scholar 

  13. R. A. Anderson, Trace Elements in Human and Animal Nutrition, Academic, New York, pp. 225–244 (1987).

    Google Scholar 

  14. W. Mertz, Chromium in human nutrition: a review, J. Nutr. 123, 626–633 (1993).

    PubMed  CAS  Google Scholar 

  15. R. A. Anderson and A. S. Kozlovsky, Chromium intakes, absorption and excretion of subjects consuming self-selected diets, Am. J. Clin. Nutr. 41, 1171–1183 (1985).

    Google Scholar 

  16. R. W. Rosebrough and N. C. Steele, Effect of supplemental dietary chromium or nicotic acid on carbonhydrate metabolism during basal, starvation and refeeding periods in poults, Poult. Sci. 60, 407–411 (1981).

    PubMed  CAS  Google Scholar 

  17. M. F. McCarty, The case for supplemental chromium and a survey of clinical studies with chromium picolinate, J. Appl. Nutr. 43, 58–66 (1991).

    CAS  Google Scholar 

  18. T. G. Page, Chromium, tryptophan and picolinate in diets for pigs and poultry, Ph.D. dissertation, Louisiana State University (1991).

  19. D. D. Gallaher, A. S. Csallany, D. W. Shoeman, and J. M. Olson, Diabetes increases excretion of urinary malondehyde cojugates in rats, Lipids 28, 663–666 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. H. G. Preuss, P. L. Grojec, S. Lieberman, and R. A. Anderson, Effects of different chromium compounds on blood pressure and lipid peroxidation in spontaneously hypertensive rats, Clin. Nephrol. 47(5), S25–30 (1997).

    Google Scholar 

  21. R. I. Press, J. Geller, and G. W. Evans, The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects, West. J. Med. 152, 41–45 (1990).

    PubMed  CAS  Google Scholar 

  22. J. D. Pagan S. G. Jackson, and S. E. Duren, The effect of chromium supplementation on metabolic response to exercise in thoroughbred horses, in Biotechnology in the Feed Industry: Proceedings of Alltech’s Eleventh Annual Symposium, T. P. Lyons and K. A. Jacques, eds. Nottingham University Press, Nottingham, UK, 249–256 (1995).

    Google Scholar 

  23. R. A. Anderson, Stress effects on chromium nutrition of humans and farm animals, in Biotechnology in the Feed Industry, T. P. Lyons and K. A. Jacques, eds., Nottingham University Press, Nothingam, UK, pp. 267–274 (1994).

    Google Scholar 

  24. NRC The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC (1997).

    Google Scholar 

  25. T. Lien, S. Chen, S. Shiau, D. Froman, and C. Y. Hu, Chromium picolinate reduces laying hen serum and egg yolk cholesterol, Professional Anim. Scientist. 12, 77–80 (1996).

    Google Scholar 

  26. K. L. Chen, et al., Effect of dietary chromium nicotinate on performance, serum traits and carass characteristics of female turkeys, J. Biomass Energy Soc. China 17, 56–62 (1998).

    CAS  Google Scholar 

  27. T. F. Lien, Y. M. Horng, and K. H. Yang, Performance, serum characteristics, carcass traits and lipid metabolism of broilers as affected by supplement of chromium picolinate, Br. Poult. Sci. 40(3, 357–361 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. A. J. Wright, D. N. Mowat, and B. A. Mallard, Supplemental chromium and bovine respiratory disease vaccines for stressed feeder calves, Can. J. Anim. Sci. 74, 287–293 (1994).

    Article  CAS  Google Scholar 

  29. K. Sahin, N., Sahin, and O. Kucuk, Effects of dietary chromium and ascorbic acid supplementation of digestion of nutrients, serum antioxidant status and mineral concentrations in laying hens reared at a low ambient temperature, Biol. Trace Element Res. 87, 113–124 (2002).

    Article  CAS  Google Scholar 

  30. K. Dakshinamurti and C. Cheah-Tan, Biotin-mediated synthesis of hepatic glucokinase in the rat, Arch. Biochem. Biophys. 127, 17–21 (1968).

    Article  PubMed  CAS  Google Scholar 

  31. L. J. Machlin, Biotin, in Handbook of Vitamins 2nd ed. revised and expanded, Marcel Dekker, New York, pp. 393–427 (1991).

    Google Scholar 

  32. Z. Q. Wang, X. H. Zhang, and W. T. Cefalu, Chromium picolinate and biotin enhance glycogen synthesis and glycogen synthase gene expression in human skeletal muscle culture, in the 17th International Diabetes Federation Congress, Mexico City, 2000.

  33. J. R. Komorowski, J. De La Harpe, W. T. Cefalu, X. H. Zhang, Z. Q. Wang, and D. Greenberg. JCR:LA-cp rats show improved lipid profiles in response to diets containing chromium picolinate and biotin, in Meeting of the Society for the Study of Ingestive Behavior, Philadelphia, 2001.

  34. NRC, Nutrient Requirements of Poultry, 9th rev. ed., National Academy Press, Washington, DC (1994).

    Google Scholar 

  35. E. J. Eisen, B. B. Bohren, and H. E. McKean, The haugh unit as a measure of egg albumen quality, Poult. Sci. 41, 1461–1468 (1962).

    Google Scholar 

  36. N. Sahin, K. Sahin, M. Onderci, M. Ozcelik, and M. O. Smith, In vivo antioxidant properties of vitamin E and chromium in cold-stressed Japanese quails Arch. Anim. Nutr. 57(3), 207–215 (2003).

    Article  CAS  Google Scholar 

  37. L. P. Berrio and J. A. Hebert, The effect of adding cholesterol to laying hen diets as powder or predissolved in fat, Poult. Sci. 69, 972–976 (1990).

    PubMed  CAS  Google Scholar 

  38. A. Franchini, F. Sirri, N. Tallarico, G. Minelli, N. Iaffaldano, and A. Meluzzi, Oxidative stability and sensory and functional properties of eggs from laying hens fed supranutritional doses of vitamins E and C, Poult. Sci. 81(11), 1744–1750 (2002).

    PubMed  CAS  Google Scholar 

  39. AOAC, Official Methods of Analysis, 15th ed., Association of Official Analytical Chemists, Arglinton, VA (1990).

    Google Scholar 

  40. SAS Institute, SAS ® User’s Guide: Statistics SAS Institute Inc., Cary, NC (1996).

    Google Scholar 

  41. M. E. Ensminger, J. E. Oldfield, and W. W. Heinemann, Feeds and Nutrition, Ensminger Publishing, Cloyis, CA, pp. 108–110 (1990).

    Google Scholar 

  42. R. E. Austic, Feeding poultry in hot and cold climates, in Stress Physiology in Livestock, M. K. Yousef, ed., CRC, Boca Raton, FL, Vol. 3, pp. 123–136 (1985).

    Google Scholar 

  43. P. A. Geraert, J. C. F. Padilha, and S. Guillaumin, Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: growth performance, body composition and energy retention, Br. J. Nutr. 75, 195–204 (1996).

    Article  PubMed  CAS  Google Scholar 

  44. J. S. Borel, T. C. Majerus, M. M. Polansky, P. B. Moser, and R. A. Anderson, Chromium intake and urinary chromium excretion of trama patients, Biol. Trace Element Res. 6, 317–321 (1984).

    Article  Google Scholar 

  45. Y. H. Kim, In K. Han, I. S. Shin, B. J. Chae, and T. H. Kang, Effects of dietary levels of chromium picolinate on growth performance, carcass quality and serum traits in broiler chicks, AJAS 9, 341–347 (1996).

    CAS  Google Scholar 

  46. P. X. Liu, L. J. Chen, D. B. Xie, and X. M. Xiong, Effects of dietary chromium on the productivity of laying hens and the distribution of chromium, Acta Agric. Univ. Jangxiensis 21, 564–568 (1999).

    CAS  Google Scholar 

  47. G. W. Evans, The effect of chromium picolinate on insulin controlled parameters in humans, Int. J. Biophys. Med. Res. 11, 163–180 (1989).

    Google Scholar 

  48. R. A. Anderson, M. M. Polansky, N. A. Bryden, and J. J. Canary, Supplementalchromium effects on glucose, insulin, glucagon and uninary chromium losses in subjects consuming controlled low-chromium diets, Am. J. Clin. Nutr. 54, 909–916 (1991).

    PubMed  CAS  Google Scholar 

  49. M. C. Linder, Nutrition and metabolism of the trace elements, in Nutritional Biochemistry and Metabolism with Clinical Applications M. C. Linder, ed, Elsevier, New York, pp. 215–276 (1991).

    Google Scholar 

  50. M. A. Cupo and W. E. Donaldson, Chromium and vanadium effects on glucose metabolism and lipid synthesis in the chick, Poult. Sci. 66, 120–126 (1987).

    PubMed  CAS  Google Scholar 

  51. S. Okado, H. Tsukada, and H. Ohba, Enhancement of nucleolar RNA synthesis by chromium(III) in regenerating rat liver, J. Inorg. Biochem. 21, 113–124 (1984).

    Article  Google Scholar 

  52. D. C. Luadicina and L. J. Marnett, Enhancement of hydroperoxide-dependent lipid peroxidation in rat liver microsomes by ascorbic acid, Arch. Biochem. Biophys. 278, 73–80 (1990).

    Article  Google Scholar 

  53. M. Onderci, et al., Antioxidant properties of chromium and zinc: in vivo effects on digestibility, lipid peroxidation, antioxidant vitamins, and some minerals under a low ambient temperature, Biol. Trace Element Res. 92(2), 139–149 (2003).

    Article  CAS  Google Scholar 

  54. W. R. Beisel, Single nutrients and immunity, Am. J. Clin. Nutr. 35, 442–451 (1982).

    Google Scholar 

  55. L. S. Tufft and C. F. Nockles, The effects of stress, Escherichia coli, dietary ethylenedi-amintetraacetic acid, and their interaction on tissue trace elements in chicks, Poult. Sci. 70, 2439–2449 (1991).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, K., Onderci, M., Sahin, N. et al. Effects of dietary combination of chromium and biotin on egg production, serum metabolites, and egg yolk mineral and cholesterol concentrations in heat-distressed laying quails. Biol Trace Elem Res 101, 181–192 (2004). https://doi.org/10.1385/BTER:101:2:181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:101:2:181

Index Entries

Navigation