, Volume 78, Issue 1-3, pp 389-399

Accumulation of biopolymers in activated sludge biomass

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this study, activated sludge bacteria from a conventional wastewater treatment process were induced to accumulate polyhydroxyalkanoates (PHAs) under different carbon-nitrogen (C:N) ratios. As the C:N ratio increased from 20 to 140, specific polymer yield increased to a maximum of 0.38 g of polymer/g of dry cell mass while specific growth yield decreased. The highest overall polymer production yield of 0.11 g of polymer/g of carbonaceous substrate consumed was achieved using a C:N ratio of 100. Moreover, the composition of polymer accumulated was dependent on the valeric acid content in the feed. Copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was produced in the presence of valeric acid. The 3-hydroxyvalerate (3HV) mole fraction in the copolymer was linearly related tovaleric content in the feed, which reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV U in the polymer increased from 0–54 mol%, the melting temperature decreased from 178° to 99°C. Thus, the composition, and hence the mechanical properties, of the copolymer produced from activated sludge can be controlled by adjusting the mole fraction of valeric acid in the feed medium.