, Volume 77, Issue 1-3, pp 19-34

Alkaline and peracetic acid pretreatments of biomass for ethanol production

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Prehydrolysis with dilute acid and steam explosion constitute the most promising methods for improving enzymatic digestibility of biomass for ethanol production. Despite world wide acceptance, these methods of pretreatment are quite expensive considering costs for the reactor, energy, and fractionation. Using peracetic acid is a lignin-oxidation pretreatment with low-energy input by which biomass can be treated in a silo-type system without need for expensive capitalization. Experimentally, ground hybrid poplar and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on ovendried biomass. The ratio of solution to biomass is 6∶1 and a 7-d storage period at ambient temperature (20°C) has been used. As an auxiliary method, a series of pre-pretreatments using stoichiometri camounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass are performed before addition of peracetic acid. The basic solutions are added to the biomass in a ratio of 14∶1 solution to biomass, and mixed for 24 h at the same ambient temperature. Biomass is filtered and washed to a neutral pH before peracetic acid addition. The aforementioned procedures give high xylan content substrates as a function of the selectivity of peracetic acid for lignin oxidation and the mild conditions of the process. Consequently, xylanase/β-glucosidase combinations were more effective than cellulase preparations in hydrolyzing these materials. The pretreatment efficiency was evaluated through enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) tests. Peracetic ac treatment improves enzymatic digestibility of hybrid poplar and sugar cane bagasse with no need of high temperatures. Alkaline treatments are helpful in reducing peracetic acid requirements in the pretreatment.