Skip to main content
Log in

Fast axonal transport misregulation and Alzheimer’s Disease

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Pathological alterations in the microtubule-associated protein (MAP) tau are well-established in a number of neurodegenerative disorders, including Alzheimer’s Disease (AD), frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), and others. Tau protein and in some cases, neurofilament subunits exhibit abnormal phosphorylation on specific serine and threonine residues in these diseases. A large body of biochemical, genetic, and cell biological evidence implicate two major serine-threonine protein kinases, glycogen synthase kinase 3 (GSK-3) and cyclin-dependent kinase 5 (CDK5) as major kinases responsible for both normal and pathological phosphorylation of tau protein in vivo. What remains unclear is whether tau phosphorylation and/or neurofibrillary tangle (NFT) formation are causal or secondary to initiation of neuronal pathology. In fact, many studies have indicated that tau misphosphorylation is not the causal event. Interestingly, some of these kinase and phosphatase activities have recently merged as key regulators of fast axonal transport (FAT). Specifically, CDK5 and GSK-3 have been recently shown to regulate kinesin-driven motility. Given the essential role of FAT in neuronal function, an alternate model for pathogenesis can be proposed. In this model, misregulation of FAT induced by an imbalance in specific kinase-phosphatase activities within neurons represents an early and critical step for the initiation of neuronal pathology. Such a model may explain many of the unique characteristics of late onset of neurological diseases such as AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Augustinack J. C., Schneider A., Mandelkow E. M., and Hyman B. T. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. (Berl) 103, 26–35.

    Article  CAS  Google Scholar 

  • Bales K. R., Verina T., Dodel R. C., Du Y., Altstiel L., Bender M., et al. (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Baum L., Hansen L., Masliah E., and Saitoh T. (1996) Glycogen synthase kinase 3 alteration in Alzheimer disease is related to neurofibrillary tangle formation. Mol. Chem. Neuropathol. 29, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Bian F., Nath R., Sobocinski G., Booher R. N., Lipinski W. J., Callahan M. J., et al. (2002) Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J. Comp. Neurol. 446, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Bloom G. S., Richards B. W., Leopold P. L., Ritchey D. M., and Brady S. T. (1993) GTPγS inhibits organelle transport along axonal microtubules. J. Cell Biol. 120, 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Bowman A. B., Kamal A., Ritchings B. W., Philp A. V., McGrail M., Gindhart J. G., et al. (2000) Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583–594.

    Article  PubMed  CAS  Google Scholar 

  • Braak E., Braak H., and Mandelkow E. M. (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol. (Berl) 87, 554–567.

    CAS  Google Scholar 

  • Brady S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75.

    Article  PubMed  CAS  Google Scholar 

  • Brady S. T. (1995) A kinesin medley: Biochemical and functional heterogeneity. Trends Cell Biol. 5, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Brady S. T. and Pfister K. K. (1991) Kinesin interactions with membrane bounded organelles in vivo and in vitro, in Motor Proteins (Kendrick-Jones J. and Cross R. A., eds.), The Company of Biologists, Ltd., Cambridge, England, Vol. 14, pp. 103–108.

    Google Scholar 

  • Brady S. T. and Sperry A. O. (1995) Biochemical and functional diversity of microtubule motors in the nervous system. Curr. Opin. Neurobiol. 5, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Brion J. P., Anderton B. H., Authelet M., Dayanandan R., Leroy K., Lovestone S., et al. (2001) Neurofibrillary tangles and tau phosphorylation. Biochem. Soc. Symp. 81–88.

  • Busciglio J., Lorenzo A., Yeh J., and Yankner B. A. (1995) beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14, 879–888.

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J., Yeh J., and Yankner B. A. (1993) beta-Amyloid neurotoxicity in human cortical culture is not mediated by excitotoxins. J. Neurochem. 61, 1565–1568.

    Article  PubMed  CAS  Google Scholar 

  • Cook D., Fry M. J., Hughes K., Sumathipala R., Woodgett J. R., and Dale T. C. (1996) Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 15, 4526–4536.

    PubMed  CAS  Google Scholar 

  • Cross D. A., Watt P. W., Shaw M., van der Kaay J., Downes C. P., Holder J. C., et al. (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett. 406, 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Cyr J. L. and Brady S. T. (1992) Molecular motors in axonal transport: cellular and molecular biology of kinesin. Mol. Neurobiol. 6, 137–156.

    PubMed  CAS  Google Scholar 

  • Cyr J. L., Pfister K. K., Bloom G. S., Slaughter C. A., and Brady S. T. (1991) Molecular genetics of kinesin light chains: Generation of isoforms by alternative splicing. Proc. Natl. Acad. Sci. USA 88, 10,114–10,118.

    Article  CAS  Google Scholar 

  • Eldar-Finkelman, H. (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol. Med. 8, 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Eldar-Finkelman H., Schreyer S. A., Shinohara M. M., LeBoeuf R. C., and Krebs E. G. (1999) Increased glycogen synthase kinase-3 activity in diabetes-and obesity-prone C57BL/6J mice. Diabetes 48, 1662–1666.

    Article  PubMed  CAS  Google Scholar 

  • Elluru R., Bloom G. S., and Brady S. T. (1995) Fast axonal transport of kinesin in the rat visual system: functionality of the kinesin heavy chain isoforms. Mol. Biol. Cell 6, 21–40.

    PubMed  CAS  Google Scholar 

  • Elyaman W., Terro F., Wong N. S., and Hugon J. (2002) In vivo activation and nuclear translocation of phosphorylated glycogen synthase kinase-3beta in neuronal apoptosis: links to tau phosphorylation. Eur. J. Neurosci. 15, 651–660.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira A., Niclas J., Vale R. D., Banker G., and Kosik K. S. (1992) Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J Cell Biol. 117, 595–606.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty D. B., Soria J. P., Tomasiewicz H. G., and Wood J. G. (2000) Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants. J. Neurosci. Res. 62, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K., D’Souza I., Crudder C. H., Onodera H., Itoyama Y., Poorkaj P., et al. (2000) Pro-apoptotic effects of tau mutations in chromosome 17 frontotemporal dementia and parkinsonism. Neuroreport 11, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Yanes C. and Sanchez-Margalet V. (2001) Pancreastatin, a chromogranin-A-derived peptide, inhibits insulin-stimulated glycogen synthesis by activating GSK-3 in rat adipocytes. Biochem. Biophys. Res. Commun. 289, 282–287.

    Article  PubMed  CAS  Google Scholar 

  • Gotz J. (2001) Tau and transgenic animal models. Brain Res. Brain Res. Rev. 35, 266–286.

    Article  PubMed  CAS  Google Scholar 

  • Gotz J., Barmettler R., Ferrari A., Goedert M., Probst A., and Nitsch R. M. (2000) In vivo analysis of wild-type and FTDP-17 tau transgenic mice. Ann. NY Acad. Sci. 920, 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Haass C. and De Strooper B. (1999) The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 286, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Hanger D. P., Hughes K., Woodgett J. R., Brion J. P., and Anderton B. H. (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al. (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck P. J. (1990) Kinesin heavy and light chains are phosphorylated in vivo in neurons. J. Cell Biol. 115, 390a (abstract).

  • Houlden H., Baker M., Adamson J., Grover A., Waring S., Dickson D., et al. (1999) Frequency of tau mutations in three series of non-Alzheimer’s degenerative dementia. Ann. Neurol. 46, 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda S., Kishida S., Yamamoto H., Murai H., Koyama S., and Kikuchi A. (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K., Shiratsuchi A., Sato S., Omori A., Arioka M., Kobayashi S., et al. (1993) Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 325, 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Ivaska J., Nissinen L., Immonen N., Eriksson J., Kahari V. M., and Heino J. (2002) Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Mol. Cell Biol. 22, 1352–1359.

    Article  PubMed  CAS  Google Scholar 

  • Jackson G. R., Wiedau-Pazos M., Sang T. K., Wagle N., Brown C. A., Massachi S., et al. (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in drosophila. Neuron 34, 509–519.

    Article  PubMed  CAS  Google Scholar 

  • Kamal A., Almenar-Queralt A., LeBlanc J. F., Roberts E. A., and Goldstein L. S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Kamal A., Stokin G. B., Yang Z., Xia C. H., and Goldstein L. S. (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Khodjakov A., Lizunova E. M., Minin A. A., Koonce M. P., and Gyoeva F. K. (1998) A specific light chain of kinesin associates with mitochondria in cultured cells. Mol. Biol. Cell 9, 333–343.

    PubMed  CAS  Google Scholar 

  • Krylova O., Messenger M. J., and Salinas P. C. (2000) Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3b. J. Cell Biol. 151, 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Laffont I., Takahashi M., Shibukawa Y., Honke K., Shuvaev V. V., Siest G., et al. (2002) Apolipoprotein E activates Akt pathway in neuro-2a in an isoform-specific manner. Biochem. Biophys. Res. Commun. 292, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • LaMonte B. H., Wallace K. E., Holloway B. A., Shelly S. S., Ascaño J., Tokito M., et al. (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Lasek R. J. and Brady S. T. (1982) The Structural Hypothesis of axonal transport: Two classes of moving elements. In Axoplasmic Transport (Weiss D. G., ed.), Springer-Verlag, Berlin/Heidelberg, pp. 397–405.

    Google Scholar 

  • Lasek R. J. and Brady S. T. (1984) Adenylyl imido-diphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, produces a stable intermediate in the motility cycle of fast axonal transport. Biol. Bull. 167, 503.

    Google Scholar 

  • Lasek R. J. and Brady S. T. (1985) Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316, 645–647.

    Article  PubMed  CAS  Google Scholar 

  • Lee K.-D. and Hollenbeck, P. J. (1995) Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth. J. Biol. Chem. 270, 5600–5605.

    Article  PubMed  CAS  Google Scholar 

  • Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al. (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405.

    Article  PubMed  CAS  Google Scholar 

  • Li B. S., Daniels M. P., and Pant H. C. (2001) Integrins stimulate phosphorylation of neurofilament NF-M subunit KSP repeats through activation of extracellular regulated-kinases (Erk1/Erk2) in cultured motoneurons and transfected NIH 3T3 cells. J. Neurochem. 76, 703–710.

    Article  PubMed  CAS  Google Scholar 

  • Li B. S., Zhang L., Takahashi S., Ma W., Jaffe H., Kulkarni A. B., et al. (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J. 21, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S., Hartley C. L., Pearce J., and Anderton B. H. (1996) Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 73, 1145–1157.

    Article  PubMed  CAS  Google Scholar 

  • Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R., and Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20, 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E. (1999) Alzheimer’s disease. The tangled tale of tau. Nature 402, 588–589.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E., Song Y. H., Schweers O., Marx A., and Mandelkow E. M. (1995) On the structure of microtubules, tau, and paired helical filaments. Neurobiol. Aging 16, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E. M., Drewes G., Biernat J., Gustke N., Van Lint J., Vandenheede J. R., et al. (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 314, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Marambaud P., Alves da Costa C., Ancolio K., and Checler F. (1998) Alzheimer’s disease-linked mutation of presenilin 2 (N141I-PS2) drastically lowers APPalpha secretion: control by the proteasome. Biochem. Biophys. Res. Commun. 252, 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • McGuinness T. L., Brady S. T., Gruner J., Sugimori M., Llinas R., and Greengard P. (1989) Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm. J. Neurosci. 9, 4138–4149.

    PubMed  CAS  Google Scholar 

  • Morfini G., Quiroga S., Rosa A., Kosik K., and Caceres A. (1997) Suppression of KIF2 in PC12 cells alters the distribution of a growth cone nonsynaptic membrane receptor and inhibits neurite extension. J. Cell Biol. 138, 657–669.

    Article  PubMed  CAS  Google Scholar 

  • Morfini G., Szebenyi G., Elluru R., Ratner N., and Brady S. T. (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 23, 281–293.

    Article  Google Scholar 

  • Morfini G., Szebenyi G., Richards B., and Brady S. T. (2001) Regulation of kinesin: implications for neuronal development. Dev. Neurosci. 23, 364–376.

    Article  PubMed  CAS  Google Scholar 

  • Morfini G., Tsai M., Szebenyi G., and Brady S. T. (2000) Approaches to study interactions between kinesin motors and membranes, in Kinesin Protocols (Vernos I., ed.), Humana Press, Totowa, NJ, Vol. 164, pp. 147–162.

    Chapter  Google Scholar 

  • Morris J. C. and Price A. L. (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. 17, 101–118.

    Article  PubMed  CAS  Google Scholar 

  • Naruse S., Thinakaran G., Luo J. J., Kusiak J. W., Tomita T., Iwatsubo T., et al. (1998) Effects of PS1 deficiency on membrane protein trafficking in neurons. Neuron 21, 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  • Pei J. J., Tanaka T., Tung Y. C., Braak E., Iqbal K., and Grundke-Iqbal I. (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 56, 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Pigino G., Pelsman A., Mori H., and Busciglio J. (2001) Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J. Neurosci. 21, 834–842.

    PubMed  CAS  Google Scholar 

  • Plyte S. E., Hughes K., Nikolakaki E., Pulverer B. J., and Woodgett J. R. (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim. Biophys. Acta 1114, 147–162.

    PubMed  CAS  Google Scholar 

  • Ratner N., Bloom G. S., and Brady S. T. (1998) A role for Cdk5 kinase in fast anterograde axonal transport: novel effects of olomoucine and the APC tumor suppressor protein. J. Neurosci. 18, 7717–7726.

    PubMed  CAS  Google Scholar 

  • Saxton W. M., Hicks J., Goldstein L. S. B., and Raff E. C. (1991) Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell 64, 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • Sperber B. R., Leight S., Goedert M., and Lee V. M. (1995) Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neurosci. Lett. 197, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Stenoien D. S. and Brady S. T. (1997) Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 8, 675–689.

    PubMed  CAS  Google Scholar 

  • Su J. H., Nichol K. E., Sitch T., Sheu P., Chubb C., Miller B. L., et al. (2000) DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp. Neurol. 163, 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Summers S. A., Kao A. W., Kohn A. D., Backus G. S., Roth R. A., Pessin J. E., et al. (1999) The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J. Biol. Chem. 274, 17,934–17,940.

    CAS  Google Scholar 

  • Sun W., Qureshi H. Y., Cafferty P. W., Sobue K., Agarwal-Mawal A., Neufield K. D., et al. (2002) Glycogen synthase kinase-3beta is complexed with tau protein in brain microtubules. J. Biol. Chem. 277, 11,933–11,940.

    CAS  Google Scholar 

  • Takashima A., Honda T., Yasutake K., Michel G., Murayama O., Murayama M., et al. (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci. Res. 31, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A., et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158.

    Article  PubMed  CAS  Google Scholar 

  • Tsai M.-Y., Morfini G., Szebenyi G., and Brady S. T. (2000) Modulation of kinesin-vesicle interactions by Hsc70: implications for regulation of fast axonal transport. Mol. Biol. Cell 11, 2161–2173.

    PubMed  CAS  Google Scholar 

  • Vale R. D., Reese T. S., and Sheetz M. P. (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Wagner M. C., Pfister K. K., Bloom G. S., and Brady S. T. (1989) Copurification of kinesin polypeptides with microtubule-stimulated Mg-ATPase activity and kinetic analysis of enzymatic processes. Cell Motil. Cytoskelet. 12, 195–215.

    Article  CAS  Google Scholar 

  • Wang Q. M., Fiol C. J., DePaoli-Roach A. A., and Roach P. J. (1994) Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J. Biol. Chem. 269, 14,566–14,574.

    CAS  Google Scholar 

  • Wittmann C. W., Wszolek M. F., Shulman J. M., Salvaterra P. M., Lewis J., Hutton M., et al. (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293, 711–714.

    Article  PubMed  CAS  Google Scholar 

  • Woodgett J. R. (1994) Regulation and functions of the glycogen synthase kinase-3 subfamily. Semin. Cancer Biol. 5, 269–275.

    PubMed  CAS  Google Scholar 

  • Woodgett J. R. (2001) Judging a Protein by More Than Its Name: GSK-3. Science’s STKE, http://stke.sciencemag.org/cgi/content/full/sigtrans;2001/100/re12.

  • Yamaguchi H., Ishiguro K., Uchida T., Takashima A., Lemere C. A., and Imahori K. (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol. (Berl) 92, 232–241.

    Article  CAS  Google Scholar 

  • Yost C., Farr G. H. 3rd, Pierce S. B., Ferkey D. M., Chen M. M., and Kimelman D. (1998) GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93, 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Zhao C., Takita J., Tanaka Y., Setou M., Nakagawa T., Takeda S., et al. (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Zheng-Fischhofer Q., Biernat J., Mandelkow E. M., Illenberger S., Godemann R., and Mandelkow E. (1998) Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur. J. Biochem. 252, 542–552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Brady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morfini, G., Pigino, G., Beffert, U. et al. Fast axonal transport misregulation and Alzheimer’s Disease. Neuromol Med 2, 89–99 (2002). https://doi.org/10.1385/NMM:2:2:089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:2:2:089

Index Entries

Navigation