Skip to main content
Log in

Imaging phenotypes and genotypes in schizophrenia

  • Reviews
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Schizophrenia is associated with subtle structural and functional brain abnormalities. Both recent and classical data suggest that it is a heterogeneous disorder that is clearly heritable. The cause and course of schizophrenia are poorly understood, and classical categories of clinical symptoms have not been particularly useful in identifying its pathophysiology or predicting its treatment. The possible genetic risk factors for schizophrenia are numerous; however, the connection between the genotype and the time-course, or the multifaceted symptoms of the disease, has yet to be established. Brain imaging methods that study the structure or function of the cortical and subcortical regions have also identified distinct patterns that distinguish schizophrenics from controls, and that may identify meaningful subtypes of schizophrenia. The predictive relationship between these imaging phenotypes and disease characteristics such as treatment response is only beginning to be revealed. The emergence of the field of imaging genetics, combining genetic, and neuroimaging data, holds much promise for the deeper understanding and improved treatment of diseases such as schizophrenia. In this article we review some of the key findings in imaging phenotyping and genotyping of schizophrenia, and the initial endeavors at their combination into more meaningful and predictive patterns, or endophenotypes identifying the relationships among clinical symptoms, course, genes, and the underlying pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, L. E., Freedman, R., Ross, R. G., et al. (1999) Elementary phenotypes in the neurobiological and genetic study of schizophrenia. Biol. Psychiatr. 46(1), 8–18.

    Article  CAS  Google Scholar 

  • Anokhin, A. P., Heath, A. C., Myers, E., et al. (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci. Lett. 353(1), 45–48.

    Article  CAS  Google Scholar 

  • Baldi, P. and Brunak, S. (2001) Bioinformatics: the Machine Learning Approach. MIT Press: Cambridge, MA, 2nd edition.

    Google Scholar 

  • Baldi, P. and Hatfield, G. W. (2002) DNA Microarrays and Gene Expression: From Experiments to Data Analysis and Modeling. Cambridge University Press: New York, NY.

    Google Scholar 

  • Barbeau, D., Liang, J. J., Robitalille Y., et al. (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc. Natl. Acad. Sci. USA 92(7), 2485–2789.

    Article  Google Scholar 

  • Basile, V. S., Masellis, M., Badri, F., et al. (1999) Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 21(1), 17–27.

    Article  CAS  Google Scholar 

  • Basile, V. S., Masellis, M., Potkin, S. G., and Kennedy, J. L. (2002) Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum. Mol. Genet. 11(20), 2517–2730.

    Article  CAS  Google Scholar 

  • Bechara, A., Damasio, A. R., Damasio, H., and Anderson, S. W. (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1,3), 7–15.

    Article  CAS  Google Scholar 

  • Benjamini and Hochberg (1995) Controlling the false discovery rate: apractical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300.

    Google Scholar 

  • Berry, M. and Linoff, G. (2004) Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, Wiley.

  • Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., et al. (2000) Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343(7), 450–456.

    Article  CAS  Google Scholar 

  • Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet. 33Suppl, 228–237.

    Article  CAS  Google Scholar 

  • Breiman, L. (2001) Random forests. Machine Learning 45(1), 5–32.

    Article  Google Scholar 

  • Brown, B. W. and Russell, K. (1997) Methods of correcting for multiple testing: operating characteristics. Stat. Med. 16(22), 2511–2528.

    Article  CAS  Google Scholar 

  • Buchsbaum, M. S., Shihabuddin, L., Hazlett, E. A., et al. (2002) Kraepelinian and non-Kraepelinian schizophrenia subgroup differences in cerebral metabolic rate. Schizophr. Res. 55(1,2), 25–40.

    Article  Google Scholar 

  • Bunney, B. G., Potkin, S. G., and Bunney, W. E. (1997) Neuropathological studies of brain tissue in schizophrenia. J. Psychiatr. Res. 31(2), 159–173.

    Article  CAS  Google Scholar 

  • Cadez, I., Heckerman, D., Meek, C., et al. (2003) Visualization of navigation patterns on a Web site using model-based clustering. J. Data Mining Knowledge Discovery 7(4), 399–424.

    Article  Google Scholar 

  • Callicott, J. H., Egan, M. F., Bertolino, A., et al. (1998) Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol. Psychiatr. 44(10), 941–950.

    Article  CAS  Google Scholar 

  • Cannon, T. D., Huttunen, M. O., Lonnqvist, J., et al. (2000) The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am. J. Hum. Genet. 67(2), 369–382.

    Article  CAS  Google Scholar 

  • Cao, X., Wong, S. T., Hoo, K. S., Jr., et al. (2004) A web-based federated neuroinformatics model for surgical planning and clinical research applications in epilepsy. Neuroinformatics 2(1), 101–118.

    Article  Google Scholar 

  • Cardon, L. R. and Bell, J. I. (2001) Association study designs for complex diseases. Nat. Rev. Genet. 2, 91–99.

    Article  CAS  Google Scholar 

  • Carlson, C. S., Eberle, M. A., Rieder, M. J., et al. (2003) Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat. Genet. 33, 518–521.

    Article  CAS  Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T. E., et al. (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631), 386–389.

    Article  CAS  Google Scholar 

  • Chakravarty, A. (1999) Population genetics-making sense out of sequence. Nat. Genet. 21, 56–60.

    Article  Google Scholar 

  • Chumakov, I., Blumenfeld, M., Guerassimenko, O., et al. (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc. Natl. Acad. Sci. USA 99(21), 13,675–13,680.

    Article  CAS  Google Scholar 

  • Chung, C., Tallerico, T., Seeman, P. (2003) Schizophrenia hippocampus has elevated expression of chondrex glycoprotein gene. Synapse. Oct; 50(1):29–34.

    Article  CAS  Google Scholar 

  • Cotter, D., Kerwin, R., al-Sarraji, S., et al. (1998) Abnormalities of WNT signalling in schizophrenia—evidence for neurodevelopmental abnormality. Neuroreport 9(7), 1379–1383.

    Article  CAS  Google Scholar 

  • Cribbie, R. A. and Keselman, H. J. (2003) Pairwise multiple comparisons: a model comparison approach versus step wise procedures. Br. J. Math Stat. Psychol. 56(Pt. 1), 167–182.

    Article  Google Scholar 

  • Cusi, D., Barlassina, C., Azzani, T., et al. (1997) Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 349, 1353–1357.

    Article  CAS  Google Scholar 

  • Daly, M. J. (2002) Estimating the human gene count. Cell 109(3), 283, 284.

    Article  CAS  Google Scholar 

  • Davidson, S. (2000) Research suggests importance of haploytpes over SNPs, Nat. Biotechnol. 18, 1134 1135.

    Article  CAS  Google Scholar 

  • Davis, K. L. and Haroutunian, V. (2003) Global expression-profiling studies and oligodendrocyte dysfunction in schizophrenia and bipolar disorden. Lancet 362(9386), 758.

    Article  Google Scholar 

  • Davis, K. L., Stewart, D. G., Friedman, J. I., et al. (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatr. 60(5), 443–456.

    Article  Google Scholar 

  • De Luca, V., Wong, A. H., Muller, D. J., et al. (2004) Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology 29(8), 1522–1526.

    Article  CAS  Google Scholar 

  • DeSilva, U., D'Arcangelo, G., Braden, V. V., et al. (1997) The human reelin gene: isolation sequencing, and mapping on chromosome 7. Genome Res. 7(2), 157–164.

    CAS  Google Scholar 

  • Devlin, B., Roeder, K. (1999) Genomic control for association studies. Biometrics 55, 997–1004.

    Article  CAS  Google Scholar 

  • Devlin, B., Roeder, K., and Wasserman, L. (2003) Analysis of multilocus models of association. Genet. Epidemiol. 25(1), 36–47.

    Article  CAS  Google Scholar 

  • Doherty, P., Fruns, M., Seaton, P., et al. (1990) A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature 343(6257), 464–466.

    Article  CAS  Google Scholar 

  • Drysdale, C. M., McGraw, D. W., Stack, C. B., et al. (2000) Complex promoter and coding region b2-adrenergicreceptor haplotypes alter receptor expression and predict in vivo responsiveness. PNAS, 97, 10,483–10,488.

    Article  CAS  Google Scholar 

  • Durany, N., Michel, T., Zochling, R., et al. (2001) Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr. Res. 52(1,2), 79–86.

    Article  CAS  Google Scholar 

  • Egan, M., Goldman, D., and Weinberger, D. (2002) The human genome: mutations. Am. J. Psychiatr. 159(1), 12.

    Article  Google Scholar 

  • Egan, M. F., Goldberg, T. E., Gscheidle, T., et al. (2001a) Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol. Psychiatr. 50(2), 98–107.

    Article  CAS  Google Scholar 

  • Egan, M. F., Goldberg, T. E., Kolachana, B. S., et al. (2001b) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98(12), 6917–6922.

    Article  CAS  Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (25), 14,863–14,868.

    Article  CAS  Google Scholar 

  • Fallon, J. H., Opole, I. O., and Potkin, S. G. (2003) Neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clin. Neurosci. Res. 3(1,2), 77–107.

    Article  CAS  Google Scholar 

  • Fan, J. B., Tang, J. X., Gu, N. F., et al. (2002) A family-based and case-control association study of the NOTCH4 gene and schizophrenia. Mol. Psychiatr. 7(1), 100–103.

    CAS  Google Scholar 

  • Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia bipolar disorder and major depression. Mol. Psychiatr. 5(6), 654–663, 571.

    Article  CAS  Google Scholar 

  • Freedman, R., Coon, H., Myles-Worsley, M., et al. (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl. Acad. Sci. USA 94(2), 587–592.

    Article  CAS  Google Scholar 

  • Friedman, J. (2001) Greedy function approximation: a gradient boosting machine. Ann. Stat. 29 (5), 1189–1232.

    Article  Google Scholar 

  • Friston, K. J. and Penny, W. (2003) Posterior probability maps and SPMs. Neuroimage 19(3), 1240–1249.

    Article  CAS  Google Scholar 

  • Gabriel, S. B., Schaffner, S. F., Nguyen, H., et al. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.

    Article  CAS  Google Scholar 

  • Garver, D. L., Holcomb, J. A., and Christensen, J. D. (2000) Heterogeneity of response to antipsychotics from multiple disorders in the schizophrenia spectrum. J. Clin. Psychiatr. 61 (12), 964–972, quiz 973.

    Article  CAS  Google Scholar 

  • Genovese, C. R., Lazar, N. A., and Nichols, T. (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4), 870–878.

    Article  Google Scholar 

  • Goodnight, C. (2000) Modeling gene interaction in structure populations. In: Wolf, J., E. B. III and Wade, M. (eds.) Epistasis and the Evolutionary Process, Oxford University Press, New York, NY, pp. 129–145.

    Google Scholar 

  • Gottesman, II. and Gould, T. D. (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatr. 160(4), 636–645.

    Article  Google Scholar 

  • Guidotti, A., Auta, J., Davis, J. M. et al. (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatr. 57(11), 1061–1069.

    Article  CAS  Google Scholar 

  • Gur, R. E., Mozley, P. D., Resnick, S. M., et al. (1995) Resting cerebral glucose metabolism in first-episode and previously treated patients with schizophrenia relates to clinical features. Arch. Gen. Psychiatr. 52(8), 657–667.

    CAS  Google Scholar 

  • Hakak, Y., Walker, J. R., Li, C., et al. (2001) Genomewideexpression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98(8), 4746–4751.

    Article  CAS  Google Scholar 

  • Hand, D., Mannila, H., and Smyth, P. (2001) Principles of Data Mining Boston, MIT Press.

    Google Scholar 

  • Harrison, P. J., and Eastwood, S. L. (1998) Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet, 352 (9141), 1669–1673.

    Article  CAS  Google Scholar 

  • Harrison, P. J., and Weinberger, D. R. (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatr. 10(1), 40–68, image 5.

    Article  CAS  Google Scholar 

  • Hastie, T., Tibshirani, R., and Friedman, J. (2001) The elements of statistical learning: data mining, inference, and prediction, Springer-Verlag, Berlin.

    Google Scholar 

  • Hawi, Z., Straub, R. E., O'Neill, A., et al. (1998) No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatr. Res. 81(2), 111–116.

    Article  CAS  Google Scholar 

  • Heberlein, A. S., Adolphs, R., Tranel, D., and Damasio, H. (2004) Cortical regions for judgments of emotions and personality traits from point-light walkers. J. Cogn. Neurosci. 16(7), 1143–1158.

    Article  Google Scholar 

  • Heckers, S., Goff, D., Schacter, D. L., et al. (1999) Functionalimaging of memory retrieval in deficit vs nondeficit schizophrenia. Arch. Gen. Psychiatr. 56 (12), 1117–1123.

    Article  CAS  Google Scholar 

  • Herskovits, E. H. (2000) An architecture for a brain-image database. Methods Inf. Med. 39 (4–5), 291–297.

    CAS  Google Scholar 

  • Herskovits, E. H. and Gerring, J. P. (2003) Application of a data-mining method based on Bayesian networks to lesion-deficit analysis. Neuroimage 19(4), 1664–1673.

    Article  Google Scholar 

  • Herskovits, E. H., Peng, H., and Davatzikos, C. (2004) A Bayesian morphometry algorithm. IEEE Trans. Med. Imaging 23(6), 723–737.

    Article  Google Scholar 

  • Hodgkinson, C. A., Goldman, D., Jaeger, J., et al. (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am. J. Hum. Genet. Nov;75(5), 862–872.

    Article  CAS  Google Scholar 

  • Hohe, M. R., Köple, K., Wendel, B., Rohde, K., et al. (2000) Sequence variability and candidate gene analysis in complex disease: association of μ opioid receptor gene variation with substance dependence. Hum. Mol. Genet. 19, 2895–2908.

    Article  Google Scholar 

  • Honer, W. G., Falkai, P., Young, C., et al. (1997) Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 78(1), 99–110.

    Article  CAS  Google Scholar 

  • Hynes, M., and Rosenthal, A. (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr. Opin. Neurobiol. 9(1), 26–36.

    Article  CAS  Google Scholar 

  • Jain, A., and Dubes, R. (1988) Algorithms for clustering data. Englewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • Jeste, D. V., Kleinman, J. E., Potkin, S. G., et al. (1982) Exuno multi: subtyping the schizophrenic syndrome. Biol. Psychiatr. 17(2), 199–222.

    CAS  Google Scholar 

  • Joosten, P. H. L. I., Toepel, M., Mariman, E. C. M., et al. (2001) Promoter haplotype combinations of the platelet-derived growth factor alpha-receptor gene predispose to human neural tube defects. Nat. Genet. 27, 215–217.

    Article  CAS  Google Scholar 

  • Jordan, M. I. (ed.) (1999) Learning in Graphical Models, Boston, MIT Press.

    Google Scholar 

  • Karson, C. N., Mrak, R. E., Schluterman, K. O., et al. (1999) Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for “hypofrontality”. Mol. Psychiatr. 4(1), 39–45.

    Article  CAS  Google Scholar 

  • Katsanis, J., Taylor, J., Iacono, W. G., and Hammer, M. A. (2000) Heritability of different measures of smooth pursuit eye tracking dysfunction: a study of normal twins. Psychophysiology 37(6), 724–730.

    Article  CAS  Google Scholar 

  • Kennedy, J. L., Farrer, L. A., Andreasen, N. C., et al. (2003) The genetics of adult-onset neuropsychiatric disease: complexities and conundra? Science 302(5646), 822–826.

    Article  CAS  Google Scholar 

  • Kennedy, J. L., Honer, W. G., Kaufmann, C. A., Martignetti, J. A., Brosius, J., and Kidd, K. K. (1992) Two RFLPs near HOX2:/NGFR at locus d17s444e. Nucleic Acids Research, 20(5), 1171.

    Article  CAS  Google Scholar 

  • Kilpatrick, L., and Cahill, L. (2003) Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. Neuroimage 20(4), 2091–2099.

    Article  Google Scholar 

  • Kim, U. K., Jorgenson, E., Coon, H., et al. (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299 (5610), 1221–1225.

    Article  CAS  Google Scholar 

  • Kleinbaum, D., (1994) Logistic regression: a self-learning text. Springer-Verlag, New York.

    Google Scholar 

  • Klempan, T. A., Muglia, P. and Kennedy, J. L. (2005) Genes in Brain Development. In: Keshavan, M., Kennedy, J. L., and Murray, R. (eds.) Neurodevelopment and Schizophrenia. Cambridge, Cambridge University Press.

    Google Scholar 

  • Kohane, I., Kho, A., and Butte, A. (2003) Microarrays for an Integrative Genomics 2002. MIT Press: Cambridge, MA.

    Google Scholar 

  • Kohtz, J. D., Baker, D. P., Corte, G., and Fishell, G. (1998) Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125(24), 5079–5089.

    CAS  Google Scholar 

  • Krawczak, M., Cooper, D. N., and Schmidtke, J. (2001) Estimating the efficacy and efficiency of cascade genetic screening. Am. J. Hum. Genet. 69(2), 361–370.

    Article  CAS  Google Scholar 

  • Lauritzen, S. L., and Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. B 50(2), 157–224.

    Google Scholar 

  • Lawrie, S. M., and Abukmeil, S. S. (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br. J. Psychiatr. 172, 110–120.

    CAS  Google Scholar 

  • Lee, K., Kunugi, H., and Nanko, S. (2001) Glial cell line-derived neurotrophic factor (GDNF) gene and schizophrenia: Polymorphism screening and association analysis. Psychiatry Res. 104 (1), 11–17.

    Article  CAS  Google Scholar 

  • Lerer, B., Segman, R. H., Fangerau, H., et al. (2002) Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 27(1), 105–119.

    Article  CAS  Google Scholar 

  • Letovsky, S. I., Whitehead, S. H., Paik, C. H., et al. (1998) A brain image database for structure/ function analysis. AJNR Am. J. Neuroradiol. 19(10), 1869–1877.

    CAS  Google Scholar 

  • Lin, K., Chudova, D., Hatfield, G., et al. (2004) Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance. Proc. Natl. Acad. Sci. USA 101(45), 15,955–15,960.

    CAS  Google Scholar 

  • Lohmueller, K. E., Pearce, C. L., Pike, M., et al. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33, 177–182.

    Article  CAS  Google Scholar 

  • Malfroy, L., Viratelle, C., Coppin, H., Borot, N., and Roth, M. P. (1995) Polymorphic tri- and tetranucleotide repeats in exons 1 and 8 of the myelin oligodendrocyte glycoprotein (MOG) gene. Hum. Genet. 96(6), 737, 738.

    Article  CAS  Google Scholar 

  • Marchini, J., and Presanis, A. (2004) Comparing methods of analyzing fMRI statistical parametric maps. Neuroimage 22(3), 1203–1213.

    Article  Google Scholar 

  • Martin, L. F., Kem, W. R., and Freedman, R. (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl.)

  • Martucci, L., Wong, A. H., Trakalo, J., et al. (2003) N-methyl-d-aspartate receptor nr1 subunit gene (GRIN1) in schizophrenia: Tdt and case-control analyses. Am. J. Med. Genet. 119B(1), 24–27.

    Article  Google Scholar 

  • McGinnis, R. E., Fox, H., Yates, P., et al. (2001) Failure to confirm NOTCH4 association with schizophrenia in a large population-based sample from Scotland. Nat. Genet. 28(2), 128, 129.

    Article  CAS  Google Scholar 

  • McLachlan, G. J., Do, K.-A., Ambroise, C. (2004) Analysing Microarray Gene Expression Data. Wiley: New York, NY.

    Book  Google Scholar 

  • McLachlan, G. J. and Peel, D. (2002) Finite Mixture Models, New York, Wiley.

    Google Scholar 

  • Mechelli, A., Price, C. J., Noppeney, U., and Friston, K. J. (2003) A dynamic causal modeling study on category effects: bottom-up or top-down mediation? J. Cogn. Neurosci. 15 (7), 925–934.

    Article  Google Scholar 

  • Meltzer, H. Y., Alphs, L., Green, A. I., et al. (2003) Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT) Arch. Gen. Psychiatr. 60(1), 82–91.

    CAS  Google Scholar 

  • Miyaoka, T., Seno, H., and Ishino, H., (1999) Increased expression of WNT-1 in schizophrenic brains. Schizophr. Res. 38(1), 1–6.

    Article  CAS  Google Scholar 

  • Mohn, A. R., Gainetdinov, R. R., Caron, M. G., and Koller, B. H. (1999). Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell, 98(4), 427–436.

    Article  CAS  Google Scholar 

  • Muglia, P., Vicente, A. M., Verga, M., et al. (2003) Association between the BDNF gene and schizophrenia. Mol. Psychiatr. 8(2), 146, 147.

    Article  CAS  Google Scholar 

  • Mukaetova-Ladinska, E. B., Hurt, J., Honer, W. G., et al. (2002) Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci. Lett. 317(3), 161–165.

    Article  CAS  Google Scholar 

  • Murphy, K. P. (2002) Dynamic Bayesian Networks: Representation, Inference, and Learning. PhD Thesis Computer Science Division, UC Berkeley.

  • Nadri, C., Dean, B., Scarr, E., and Agam, G. (2004) GSK-3 parameters in postmortem frontal cortex and hippocampus of schizophrenic patients. Schizophr. Res. Dec 1; 71(2–3), 377–382.

    Article  Google Scholar 

  • Nanko, S., Hattori, M., Kuwata, S., et al. (1994) Neurotrophin-3 gene polymorphism associated with schizophrenia. Acta Psychiatr. Scand. 89 (6), 390–392.

    CAS  Google Scholar 

  • Nichols, T. and Hayasaka, S. (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12(5), 419–446.

    Article  Google Scholar 

  • Northoff, G., Kotter, R., Baumgart, F., et al. (2004) Orbitofrontal cortical dysfunction in akinetic catatonia: a functional magnetic resonance imaging study during negative emotional stimulation. Schizophr. Bull. 30(2), 405–427.

    Google Scholar 

  • Nyholt, D. R. (2001) Genetic case-control association studies—correcting for multiple testing. Hum. Genet. 109(5), 564–567.

    Article  CAS  Google Scholar 

  • Ohmori, O., Shinkai, T., Hori, H., Kojima, H., and Nakamura, J. (2000). Synapsin III gene polymorphisms and schizophrenia. Neurosci. Lett. 279(2), 125–127.

    Article  CAS  Google Scholar 

  • Ott, J. and Hoh, J. (2000) Statistical approaches to gene mapping. Am. J. Hum. Genet. 67, 289–294.

    Article  CAS  Google Scholar 

  • Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems Los Alios, CA, Morgan Kaufmann.

    Google Scholar 

  • Peltonen, L. and McKusick, V. A. (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. Science 291, 1224–1229.

    Article  CAS  Google Scholar 

  • Penny, W., Kiebel, S., and Friston, K. (2003) Variational Bayesian inference for fMRI time series. Neuroimage 19(3), 727–741.

    Article  Google Scholar 

  • Penny, W. D., Trujillo-Barreto, N. J., and Friston, K. J. (2005) Bayesian fMRI time series analysis with spatial priors. Neuroimage 24(2), 350–362.

    Article  Google Scholar 

  • Perneger, T. V. (1998) What's wrong with Bonferroni adjustments. Bt. Med. J. 316 (7139), 1236–1238.

    CAS  Google Scholar 

  • Pevzner, P. (2000) Computational Molecular Biology: An Algorithmic Approach. MIT Press: Cambridge, MA.

    Google Scholar 

  • Potkin, S. G., Basile, V. S., Jin, Y., and Masellis, M. (2002a) D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol. Psychiatr. 8(1), 109–113.

    Article  CAS  Google Scholar 

  • Potkin, S. G., Alphs, L., Hsu, C., et al. (2003a) Predicting suicidal risk in schizophrenic and schizoaffective patients in a prospective two-year trial. Biol. Psychiatr. 54(4), 444–452.

    Article  Google Scholar 

  • Potkin, S. G., Alva, G., Fleming, K., et al. (2002b) A PET study of the pathophysiology of negative symptoms in schizophrenia. Positron emission tomography. Am. J. Psychiatr. 159 (2), 227–237.

    Article  Google Scholar 

  • Potkin, S. G., Basile, V. S., Jin, Y., et al. (2003b) D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol. Psychiatr. 8(1), 109–113.

    Article  CAS  Google Scholar 

  • Prasad, K. M., Chowdari K. V., Nimgaonkar, V. L., et al. (2005) Genetic polymorphisms of the RGS4 and dorsolateral prefrontal cortex morphometry among first episode schizophrenia patients. Mol. Psychiatr. 10(2), 213–219.

    Article  CAS  Google Scholar 

  • Prasad, K. M., Patel, A. R., Muddasani, S., et al. (2004) The entorihinal cortex in first-episode psychotic disorders: a structural magnetic resonance imaging study. Am. J. Psychiatr. 161(9), 1612–1619.

    Article  Google Scholar 

  • Pritchard, J. K. (2001) Are rare variants responsible for susceptibility to complex traits? Am. J. Hum. Genet. 46, 222–228.

    Google Scholar 

  • Proschel, M., Saunders, A., Roses, A. D., and Muller, C. R. (1992) Dinucleotide repeat polymorphism at the human gene for the brain-derived neurotrophic factor (BDNF). Hum. Mol. Genet. 1(5), 353.

    Article  CAS  Google Scholar 

  • Purdon, P. L. and Weisskoff, R. M. (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-levl false-positive rates in fMRI. Hum. Brain Mapp. 6(4), 239–249.

    Article  CAS  Google Scholar 

  • Reich, D. E., Gabriel, S. B., Altshuler, D. (2003) Quality and completeness of, SNP databases. Nat. Genet. 33, 457–458.

    Article  CAS  Google Scholar 

  • Rice, D. S. and Curran, T. (2001) Role of the reelin signaling pathway in central nervous system development. Ann. Rev. Neurosci. 24, 1005–1039.

    Article  CAS  Google Scholar 

  • Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273(5281) 1516–1517.

    Article  CAS  Google Scholar 

  • Risch, N., Burchard, E., Ziv., E., and Tang, H. (2002) Categorization of humans in biomedical research: genes, race and disease. Genome Biol. 3(7), comment 2007.

  • Roberts, N. A., Beer, J. S., Werner, K. H., et al. (2004) The impact of orbital prefrontal cortex damage on emotional activation to unanticipated and anticipated acoustic startle stimuli. Cogn. Affect Behav. Neurosci. 4(3), 307–316.

    Article  Google Scholar 

  • Rodriguez, M. A., Pesold, C., Liu, W. S., et al. (2000) Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc. Natl. Acad. Sci. USA 97(7), 3550–3555.

    Article  CAS  Google Scholar 

  • Rothman K. and Greenland, S. (1998) Concept of interaction. In: Rothman K. and Greenland, S. (eds.) Modern Epidemiology. Philadelphia Lippincott-Raven, pp. 329–342.

    Google Scholar 

  • Sasaki, T., Dai, X. Y., Kuwata, S., et al. (1997) Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am. J. Med. Genet. 74(4), 443, 444.

    Article  CAS  Google Scholar 

  • Scholkopf, B. and Smola, A. (2002) Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyound Cambridge, MIT Press.

    Google Scholar 

  • Scholkopf, B., Tsuda, K., and Vert, J. P. eds. (2004) Kernel Methods in Computational Biology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schwab, S. G., Albus, M., Hallmayer, J., et al. (1995) Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nat. Genet. 11(3), 325–327.

    Article  CAS  Google Scholar 

  • Segal, M. R., Dahlquist, K. D., and Conklin, B. R. (2003) Regression approaches for microarray data analysis. J. Comput. Biol. 10(6), 961–980.

    Article  CAS  Google Scholar 

  • Selemon, L. D., Rajkowska, G., and Goldman-Rakic, P. S. (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occiptal area 17. Arch. Gen. Psychiatr. 52(10), 805–818; discussion 819, 820.

    CAS  Google Scholar 

  • Sham, P. C. (1998) Statistical methods in psychiatric genetics. Stat. Methods Med. Res. 7(3), 279–300.

    Article  CAS  Google Scholar 

  • Shenton, M. E., Dickey, C. C., Frumin, M., and McCarley R. W. (2001) A review of MRI findings in schizophrenia. Schizophr. Res. 49(1,2), 1–52.

    Article  CAS  Google Scholar 

  • Sivagnansundaram, S., Muller, D., Gubanov, A., et al. (2003) Genetics of Schizophrenia: Current Strategies. Clin. Neurosci. Res. 3(1,2), 5–15.

    Article  CAS  Google Scholar 

  • Sklar, P., Schwab, S. G., Williams, N. M., et al. (2001) Association analysis of NOTCH4 loci in schizophrenia using family and population-based controls. Nat. Genet. 28(2), 126–128.

    Article  CAS  Google Scholar 

  • Small, G. W. (2002) Brain-imaging surrogate markers for detection and prevention of age-related memory loss. J. Mol. Neurosci. 19(1,2), 17–21.

    CAS  Google Scholar 

  • Small, G. W., Ercoli, L. M., Silverman, D. H., et al. (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97(11), 6037–6042.

    Article  CAS  Google Scholar 

  • Smyth, P. (2000) Data mining: data analysis on a grand scale? Stat. Methods Med. Res. 9, 309–327.

    Article  CAS  Google Scholar 

  • Smyth, P., Heckerman, D., and Jordan, M. I. (1997) Probabilistic independence networks for hidden Markov models. Neural Computation, 9(2), 227–269.

    Article  CAS  Google Scholar 

  • Smyth, P., Pregibon, D., and Faloutsos, C. (2002) Data-driven evolution of data mining algorithms. Commun. ACM. 45(8), 33–37.

    Article  Google Scholar 

  • Speed, T. ed. (2003) Statistical Analysis of Gene Expression Microarrya Data. Chapman & Hall/CRC: Boca Raton, FL.

    Google Scholar 

  • Spellman, P. T., Sherlock, G., Zhang, M. Q., et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hydridization. Mol. Biol. Cell 9(12), 3273–3297.

    CAS  Google Scholar 

  • Spinks, R., Sandhu, H. K., Andreasen, N. C., and Philibert, R. A. (2004) Association of the HOPA 12bp allele with a large X-chromosome haplotype and positive symptom schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr Genet. 127(1), 20–27.

    Article  Google Scholar 

  • Stober, G., Syagailo, Y. V., Okladnova, O., et al. (1999) Functional pax-6 gene-linked polymorphic region: Potential association with paranoid schizophrenia. Biol. Psychiatry. 45(12), 1585–1591.

    Article  CAS  Google Scholar 

  • Stone, V. E., Baron-Cohen, S., and Knight, R. T. (1998) Frontal lobe contributions to theory of mind. J. Cogn. Neurosci. 10(5), 640–656.

    Article  CAS  Google Scholar 

  • Storey, J. D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100(16), 9440–9445.

    Article  CAS  Google Scholar 

  • Straub, R. E., Jiang, Y., MacLean, C. J., et al. (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet. 71(2), 337–348.

    Article  CAS  Google Scholar 

  • Straub, R. E., MacLean, C. J., O'Neill, F. A., et al. (1995) A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat. Genet. 11(3), 287–293.

    Article  CAS  Google Scholar 

  • Swift-Scanlan, T., Lan, T. H., Fallin, M. D., et al. (2002) Genetic analysis of the (CTG)n NOTCH4 polymorphism in 65 multiplex bipolarpedigrees. Psychiatr. Genet. 12(1), 43–47.

    Article  CAS  Google Scholar 

  • Tabor, H. K., Risch, N. J., and Myers, R. M. (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat. Rev. Genet. 3, 391–397.

    Article  CAS  Google Scholar 

  • Tachikawa, H., Harada, S., Kawanishi, Y., Okubo, T., and Suzuki, T. (2001) Polymorphism of the 5′-upstream region of the human SNAP-25 gene: An association analysis with schizophrenia. Neuropsychobiology, 43(3), 131–133.

    Article  CAS  Google Scholar 

  • Takahashi, M., Shirakawa, O., Toyooka, K., et al. (2000) Abnormal expression of brain-derived neurotrophic factor and its receptor in the crticolombic system of schizophrenic patients. Mol. Psychiatr. 5(3) 293–300.

    Article  CAS  Google Scholar 

  • Terwillinger, J. D. and Weiss, K. M. (1998) Linkage disequilibrium mapping of complex disease: fantasy or reality? Cur. Opin. Biotechnol. 9, 578–594.

    Article  Google Scholar 

  • Thome, J., Durany, N., Harsanyi, A., et al. (1996) A null mutation allele in the CNTF gene and schizophrenic psychoses. Neuroreport, 7(8) 1413–1416.

    Article  CAS  Google Scholar 

  • Thompson, P. M., Sower, A. C., and Perrone-Bizzozero, N. I. (1998) Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol. Psychiatr. 43(4), 239–243.

    Article  CAS  Google Scholar 

  • Toga, A. W. and Mazziotta, J. C. (2000) Brain Mapping: The Methods. Academic Press, Amsterdam, Boston.

    Google Scholar 

  • Tsuang, M. T. (1998) Genetic epidemiology of schizophrenia: review and reassessment. Kaohsiung J. Med. Sci. 14(7), 405–412.

    CAS  Google Scholar 

  • Turetsky, B., Cowell, P. E., Gur, R. C., et al. (1995) Frontal and temporal lobe brain volumes in schizophrenia. Relationship to symptoms and clinical subtype. Arch. Gen. Psychiatr. 52(12), 1061–1070.

    CAS  Google Scholar 

  • Tuulio-Henriksson, A., Ilonen, T., Pirkola, T., and Lonnqvist, J. (2000) Neuropsychology in research and therapy of schizophrenia. Duodecim 116 (14), 1453–1458.

    CAS  Google Scholar 

  • Ujike, H., Takehisa, Y., Takaki, M., et al. (2001) NOTCH4 gene polymorphism and susceptibility to schizophrenia and schizoaffective disorder. Neurosci. Lett. 301(1), 41–44.

    Article  CAS  Google Scholar 

  • Vicente, A. M., Macciardi, F., Verga, M., et al. (1997) NCAM and schizophrenia: Genetics studies. Mol. Psychiatr. 2(1), 65–69.

    Article  CAS  Google Scholar 

  • Wang, J., Shapiro, B., Shasha, D. eds. (1999) Pattern Discovery in Biomolecular Data: Tools, Techniques, and Applications. Oxford University Press, New York, NY.

    Google Scholar 

  • Wang, W. Y. S., Cordell, H. J., and Todd, J. A. (2003) Association mapping of complex diseases in linked regions: estimation of genetic effects and feasibility of testing rare variants. Genet. Epidemiol. 24, 36–43.

    Article  CAS  Google Scholar 

  • Wei, J. and Hemmings, G. P. (2000) The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat. Genet. 25(4), 376, 377.

    Article  CAS  Google Scholar 

  • Weinberger, D. R. and Berman, K. F. (1996) Prefrontal function in schizophrenia: confounds and controversies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351(1346), 1495–1503.

    Article  CAS  Google Scholar 

  • Weinberger, D. R., Egan, M. F., Bertolino, A., et al. (2001) Pretrontal neurons and the genetics of schizophrenia. Biol. Psychiatr. 50(11), 825–844.

    Article  CAS  Google Scholar 

  • Weiss, K. M. and Terwilliger, J. D. (2000) How many diseases does it take to map a gene with SNPs? Nat. Genet. 26, 151–157.

    Article  CAS  Google Scholar 

  • Winkler, G. (2003) Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A mathematical introduction. Springer: Berlin, 2nd edition.

    Google Scholar 

  • Winokur, G. (1975) Paranoid vs hebephrenic schizophrenia: clinical and familial (genetic) heterogeneity. Psychopharmacol. Commun. 1(6), 567–577.

    CAS  Google Scholar 

  • Wolkin, A., Sanfilipo, M. Duncan, E., et al. (1996) Blunted change in cerebral glucose utilization after haloperidol treatment in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry 153(3), 346–354.

    CAS  Google Scholar 

  • Wong, A. H., Macciardi, F., Klempan, T., et al. (2003). Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene. Mol. Psychiatry 8(2), 156–166.

    Article  CAS  Google Scholar 

  • Wong, A. H., Trakalo, J., Likhodi, O., et al. (2004) Association between schizophrenia and the syntaxin 1A gene. Biol. Psychiatry Jul 1 56(1), 24–29.

    Article  CAS  Google Scholar 

  • Wright, P., Nimgaonkar, V. L., Donaldson, P. T., and Murray, R. M. (2001) Schizophrenia and HLA: a review. Schizophr. Res. 47(1), 1–12.

    Article  CAS  Google Scholar 

  • Xu, J., Pato, M. T., Torre, C. D., et al. (2001) Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am. J. Med. Genet. 105(8), 669–674.

    Article  CAS  Google Scholar 

  • Young, C. E., Arima, K., Xie, J., et al. (1998) SNAP-25 dificit and hippocampal connectivity in schizophrenia. Cereb. Cortex 8(3), 261–268.

    Article  CAS  Google Scholar 

  • Zai, G., King, N., Wigg, K., et al. (2005) Genetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia. Genes Brain Behav. Feb; 4(1), 2–9.

    Article  CAS  Google Scholar 

  • Zaykin, D. V., Westfall, P. H., Young, S. S., et al. (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum. Heredity 53, 79–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Potkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, J.A., Smyth, P., Macciardi, F. et al. Imaging phenotypes and genotypes in schizophrenia. Neuroinform 4, 21–49 (2006). https://doi.org/10.1385/NI:4:1:21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/NI:4:1:21

Index Entries

Navigation