Skip to main content
Log in

Intracellular A-beta amyloid, A sign for worse things to come?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this review the authors discuss the possible neuropathological role of intracellular amyloid-β accumulation in Alzheimer’s disease (AD) pathology. There is abundant evidence that at early stages of the disease, prior to Aβ amyloid plaque formation, Aβ peptides accumulate intraneuronally in the cerebral cortex and the hippocampus. The experimental evidence would indicate that intracellular amyloid-β could originate both by intracellular biosynthesis and also from the uptake of amyloidogenic peptides from the extracellular milieu. Herein the aspects of the possible impact of intracellular amyloid-β in human AD pathology are discussed, as well as recent observations from a rat transgenic model with a phenotype of intracellular accumulation of Aβ fragments in neurons of the hippocampus and cortex, without plaque formation. In this model, the intracellular amyloid-β phenotype is accompanied by increased MAPK/ERK activity and tau hyperphosphorylation. Finally, the authors discuss the hypothesis that, prior to plaque formation, intracellular Aβ accumulation induces biochemical and pathological changes in the brain at the cellular level priming neurons to further cytotoxic attack of extracellular amyloidogenic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sadovnick, D. and Lovestone, S. (2001) Genetic counselling, in Clinical Diagnosis and Management of Alzheimer’s Disease? (Gauthier, S., ed.) Martin Dunitz, London, pp. 355–365.

    Google Scholar 

  2. Terry, R. D., Masliah, E., and Hansen, L. A. (1999) The neuropathology of Alzheimer’s disease and the structural basis of its cognitive alterations, in Alzheimer’s Disease (Terry, R. D., Katzman, R., and Bick, K. L., eds.) Raven Press, New York, pp. 187–206.

    Google Scholar 

  3. Goedert, M. (1998) Neurofibrillary pathology of Alzheimer’s disease and other tauopathies Prog. Brain Res. 117, 287–306.

    PubMed  CAS  Google Scholar 

  4. Avila, J., Lim, F., Moreno, F., Belmonte, C., and Cuello, A. C. (2002) Tau function and dysfunction in neurons: its role in neurodegenerative disorders. Mol. Neurobiol. (In press.)

  5. Haass, C., Schlossmacher, M. G., Hung, A. Y., et al. (1992) Amyloid b-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.

    PubMed  CAS  Google Scholar 

  6. Shoji, M., Golde, T. E., Ghiso, J., et al. (1992) Production of the Alzheimer amyloid b protein by normal proteolytic processing. Science 258, 126–129.

    PubMed  CAS  Google Scholar 

  7. Walter, J., Kaether, C., Steiner, H., and Haass, C. (2001) The cell biology of Alzheimer’s disease: uncovering the secrets of secretases. Curr. Opin. Neurobiol. 11, 585–590.

    PubMed  CAS  Google Scholar 

  8. Vassar, R. and Citron, M. (2000) Abeta-generating enzymes: recent advances in beta- and gamma-secretase research. Neuron 27, 419–422.

    PubMed  CAS  Google Scholar 

  9. Tamaoka, A., Sawamura, N., Odaka, A., Suzuki, N., Mizusawa, H., Shoji, S., and Mori, H. (1995) Amyloid beta protein 1-42/43 (A beta 1-42/43) in cerebellar diffuse plaques: enzymelinked immunosorbent assay and immunocytochemical study. Brain Res. 679, 151–156.

    PubMed  CAS  Google Scholar 

  10. Citron, M., Oltersdorf, T., Haass, C., et al. (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 360, 672–674.

    PubMed  CAS  Google Scholar 

  11. Hardy, J. (1999) The shorter amyloid cascade hypothesis. Neurobiol. Aging 20, p. 85.

    PubMed  CAS  Google Scholar 

  12. Selkoe, D. J. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    PubMed  CAS  Google Scholar 

  13. Goate, A., Chartier-Harlin, M. C., Mullan, M., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.

    PubMed  CAS  Google Scholar 

  14. Sherrington, R., Rogaev, E. I., Liang, Y., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.

    PubMed  CAS  Google Scholar 

  15. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376, 775–778.

    PubMed  CAS  Google Scholar 

  16. Levy-Lahad, E., Wasco, W., Poorkaj, P., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.

    PubMed  CAS  Google Scholar 

  17. Corder, E. H., Saunders, A. M., Strittmatter, W. J., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.

    PubMed  CAS  Google Scholar 

  18. Strittmatter, W. J. (2000) Apolipoprotein E and Alzheimer’s disease. Ann. NY Acad. Sci. 924, 91–92.

    PubMed  CAS  Google Scholar 

  19. Poirier, J. (1994) Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci. 17, 525–530.

    PubMed  CAS  Google Scholar 

  20. Bales, K. R., Verina, T., Dodel, R. C., et al. (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263–264.

    PubMed  CAS  Google Scholar 

  21. Poirier, J. (2000) Apolipoprotein E and Alzheimer’s disease. A role in amyloid catabolism. Ann. NY Acad. Sci. 924, 81–90.

    PubMed  CAS  Google Scholar 

  22. Blacker, D. and Tanzi, R. E. (1998) The genetics of Alzheimer disease: current status and future prospects. Arch. Neurol. 55, 294–296.

    PubMed  CAS  Google Scholar 

  23. Nicoll, J. A., Mrak, R. E., Graham, D. I., et al. (2000) Association of interleukin-1 gene polymorphisms with Alzheimer’s disease. Ann. Neurol. 47, 365–368.

    PubMed  CAS  Google Scholar 

  24. Papassotiropoulos, A., Bagli, M., Feder, O., et al. (1999) Genetic polymorphism of cathepsin D is strongly associated with the risk for developing sporadic Alzheimer’s disease. Neurosci. Lett. 262, 171–174.

    PubMed  CAS  Google Scholar 

  25. Kamboh, M. I., Ferrell, R. E., and DeKosky, S. T. (1998) Genetic association studies between Alzheimer’s disease and two polymorphisms in the low density lipoprotein receptor-related protein gene. Neurosci. Lett. 244, 65–68.

    PubMed  CAS  Google Scholar 

  26. Yamanaka, H., Kamimura, K., Tanahashi, H., Takahashi, K., Asada, T., and Tabira, T. (1998) Genetic risk factors in Japanese Alzheimer’s disease patients: alphal-ACT, VLDLR, and ApoE Neurobiol. Aging 19, S43-S46.

    CAS  Google Scholar 

  27. Hu, Q., Kukull, W. A., Bressler, S. L., Gray, M. D., Cam, J. A., Larson, E. B., Martin, G. M., and Deeb, S. S. (1998) The human FE65 gene: genomic structure and an intronic biallelic polymorphism associated with sporadic dementia of the Alzheimer type. Hum. Genet. 103, 295–303.

    PubMed  CAS  Google Scholar 

  28. Montoya, S. E., Aston, C. E., DeKosky, S. T., Kamboh, M. I., Lazo, J. S., and Ferrell, R. E. (1998) Bleomycin hydrolase is associated with risk of sporadic Alzheimer’s disease. Nat. Genet. 18, 211–212.

    PubMed  CAS  Google Scholar 

  29. Finckh, U., von der, K. H., Velden, J., et al. (2000) Genetic association of a cystatin C gene polymorphism with late-onset Alzheimer disease. Arch. Neurol. 57, 1579–1583.

    PubMed  CAS  Google Scholar 

  30. Jaffe, A. B., Toran-Allerand, C. D., Greengard, P., and Gandy, S. E. (1994) Estrogen regulates metabolism of Alzheimer amyloid beta precursor protein. J. Biol. Chem. 269, 13,065–13,068.

    CAS  Google Scholar 

  31. Tang, M. X., Jacobs, D., Stern, Y., Marder, K., Schofield, P., Gurland, B., Andrews, H., and Mayeux, R. (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348, 429–432.

    PubMed  CAS  Google Scholar 

  32. Xu, H., Sweeney, D., Wang, R., Thinakaran, G., Lo, A. C., Sisodia, S. S., Greengard, P., and Gandy, S. (1997) Generation of Alzheimer bamyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc. Natl. Acad. Sci. USA 94, 3748–3752.

    PubMed  CAS  Google Scholar 

  33. Zheng, H., Xu, H., Uljon, S. N., et al. (2002) Modulation of A(beta) peptides by estrogen in mouse models. J. Neurochem. 80, 191–196.

    PubMed  CAS  Google Scholar 

  34. Chang, D., Kwan, J. and Timiras, P. S. (1997) Estrogens influence growth, maturation, and amyloid beta-peptide production in neuroblastoma cells and in a beta-APP transfected kidney 293 cell line. Adv. Exp. Med. Biol. 429, 261–271.

    PubMed  CAS  Google Scholar 

  35. Mattson, M. P. and Chan, S. L. (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J. Mol. Neurosci. 17, 205–224.

    PubMed  CAS  Google Scholar 

  36. Mattson, M. P. (2000) Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res. 886, 47–53.

    PubMed  CAS  Google Scholar 

  37. Borchelt, D. R., Thinakaran, G., Eckman, C. B., et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17, 1005–1013.

    PubMed  CAS  Google Scholar 

  38. Fraser, P. E., Yang, D. S., Yu, G., et al. (2000) Presenilin structure, function and role in Alzheimer disease. Biochim. Biophys. Acta. 1502, 1–15.

    PubMed  CAS  Google Scholar 

  39. Chartier-Harlin, M. C., Crawford, F., Houlden, H., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846.

    PubMed  CAS  Google Scholar 

  40. Haass, C., Lemere, C. A., Capell, A., et al. (1995) The Swedish mutation causes earlyonset Alzheimer’s disease by beta-secretase cleavage within the secretory pathway. Nat. Med. 1, 1291–1296.

    PubMed  CAS  Google Scholar 

  41. Citron, M., Westaway, D., Xia, W., et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med. 3, 67–72.

    PubMed  CAS  Google Scholar 

  42. Glabe, C. (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J. Mol. Neurosci. 17, 137–145.

    PubMed  CAS  Google Scholar 

  43. Burger, P. C. and Vogel, F. S. (1973) The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am. J. Pathol. 73, 457–476.

    PubMed  CAS  Google Scholar 

  44. Whalley, L. J. (1982) The dementia of Down’s syndrome and its relevance to aetiological studies of Alzheimer’s disease. Ann. NY Acad. Sci. 396, 39–53.

    PubMed  CAS  Google Scholar 

  45. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245–4249.

    PubMed  CAS  Google Scholar 

  46. Wisniewski, K. E., Wisniewski, H. M., and Wen, G. Y. (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.

    PubMed  CAS  Google Scholar 

  47. Mann, D. M., Yates, P. O., Marcyniuk, B., and Ravindra, C. R. (1986) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol. Appl. Neurobiol. 12, 447–457.

    PubMed  CAS  Google Scholar 

  48. Cork, L. C. (1990) Neuropathology of Down syndrome and Alzheimer disease. Am. J. Med. Genet. Suppl 7, 282–286.

    Google Scholar 

  49. Fukuoka, Y., Fujita, T., and Ito, H. (1990) Histopathological studies on senile plaques in brains of patients with Down’s syndrome Kobe. J. Med. Sci. 36, 153–171.

    CAS  Google Scholar 

  50. Hof, P. R., Bouras, C., Perl, D. P., Sparks, D. L., Mehta, N., and Morrison, J. H. (1995) Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52, 379–391.

    PubMed  CAS  Google Scholar 

  51. Hyman, B. T., West, H. L., Rebeck, G. W., Lai, F., and Mann, D. M. (1995) Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurol. 52, 373–378.

    PubMed  CAS  Google Scholar 

  52. Mann, D. M., Prinja, D., Davies, C. A., et al. (1989) Immunocytochemical profile of neurofibrillary tangles in Down’s syndrome patients of different ages. J. Neurol. Sci. 92, 247–260.

    PubMed  CAS  Google Scholar 

  53. Alvarez, A., Toro, R., Caceres, A., and Maccioni, R. B. (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid-induced neuronal death. FEBS Lett. 459, 421–426.

    PubMed  CAS  Google Scholar 

  54. Morishima, Y., Gotoh, Y., Zieg, J., et al. (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J. Neurosci. 21, 7551–7560.

    PubMed  CAS  Google Scholar 

  55. Sheng, J. G., Jones, R. A., Zhou, X. Q., McGinness, J. M., Van Eldik, L. J., Mrak, R. E., and Griffin, W. S. (2001) Interleukin-1 promotion of MAPK-p38 overexpression in experimental animals and in Alzheimer’s disease: potential significance for tau protein phosphorylation. Neurochem. Int. 39, 341–348.

    PubMed  CAS  Google Scholar 

  56. Zhu, X., Castellani, R. J., Takeda, A., Nunomura, A., Atwood, C. S., Perry, G., and Smith, M. A. (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech. Ageing Dev. 123, 39–46.

    PubMed  CAS  Google Scholar 

  57. Zhu, X., Rottkamp, C. A., Hartzler, A., et al. (2001) Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease. J. Neurochem. 79, 311–318.

    PubMed  CAS  Google Scholar 

  58. Checler, F., da Costa, C. A., Ancolio, K., Chevallier, N., Lopez-Perez, E., and Marambaud, P. (2000) Role of the proteasome in Alzheimer’s disease. Biochim. Biophys. Acta. 1502, 133–138.

    PubMed  CAS  Google Scholar 

  59. McGeer, P. L. and McGeer, E. G. (1992) Complement proteins and complement inhibitors in Alzheimer’s disease. Res. Immunol. 143, 621–624.

    PubMed  CAS  Google Scholar 

  60. Emmerling, M. R., Watson, M. D., Raby, C. A., and Spiegel, K. (2000) The role of complement in Alzheimer’s disease pathology. Biochim. Biophys. Acta. 1502, 158–171.

    PubMed  CAS  Google Scholar 

  61. Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., and Perry, G. (2000) Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta. 1502, 139–144.

    PubMed  CAS  Google Scholar 

  62. Varadarajan, S., Yatin, S., Aksenova, M., and Butterfield, D. A. (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130, 184–208.

    PubMed  CAS  Google Scholar 

  63. Numomura, A., Perry, G., Aliev, G., et al. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767.

    Google Scholar 

  64. Nixon, R. A., Mathews, P. M. and Ctaldo, A. M. (2001) The neuronal endosomal-lysosomal system in Alzheimer’s disease. J. Alz. Dis. 3, 97–107.

    CAS  Google Scholar 

  65. Casley, C. S., Canevari, L., Land, J. M., Clark, J. B., and Sharpe, M. A. (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100.

    PubMed  CAS  Google Scholar 

  66. Grant, S. M., Morinville, A., Maysinger, D., Szyf, M., and Cuello, A. C. (1999) Phosporylation of mitogen-activated protein kinase is altered in neuroectodermal cells overexpressing the human amyloid precursor protein 751 isoform. Mol. Brain Res. 72, 115–120.

    PubMed  CAS  Google Scholar 

  67. Canevari, L., Clark, J. B., and Bates, T. E. (1999) Beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457, 131–134.

    PubMed  CAS  Google Scholar 

  68. Parks, J. K., Smith, T. S., Trimmer, P. A., Bennett, J. P., Jr. and Parker, W. D., Jr. (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76, 1050–1056.

    PubMed  CAS  Google Scholar 

  69. Harkany, T., Hortobagyi, T., Sasvari, M., Konya, C., Penke, B., Luiten, P. G., and Nyakas, C. (1999) Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity: relevance to Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 963–1008.

    PubMed  CAS  Google Scholar 

  70. Auld, D. S., Kar, S., and Quirion, R. (1998) Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci. 21, 43–49.

    PubMed  CAS  Google Scholar 

  71. Kar, S., Seto, D., Gaudreau, P., and Quirion, R. (1996) Beta-amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J. Neurosci. 16, 1034–1040.

    PubMed  CAS  Google Scholar 

  72. Laskay, G., Zarandi, M., Varga, J., Jost, K., Fonagy, A., Torday, C., Latzkovits, L., and Penke, B. (1997) A putative tetrapeptide antagonist prevents beta-amyloid-induced long-term elevation of [Ca2+]i in rat astrocytes. Biochem. Biophys. Res. Commun. 235, 479–481.

    PubMed  CAS  Google Scholar 

  73. Lin, H., Bhatia, R., and Lal, R. (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J. 15, 2433–2444.

    PubMed  CAS  Google Scholar 

  74. Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L., and Rydel, R. E. (1993) Beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci. 16, 419–414.

    Google Scholar 

  75. Mattson, M. P. and Pedersen, W. A. (1998) Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer’s disease. Int. J. Dev. Neurosci. 16, 737–753.

    PubMed  CAS  Google Scholar 

  76. Tong, L., Thornton, P. L., Balazs, R., and Cotman, C. W. (2001) Beta-amyloid (1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J. Biol. Chem. 276, 17,301–17,306.

    CAS  Google Scholar 

  77. Ferrer, I., Blanco, R., Carmona, M., Puig, B., Dominguez, I., and Vinals, F. (2002) Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta. Neuropathol. (Berl.) 103, 391–407.

    CAS  Google Scholar 

  78. Cummings, B. J., Pike, C. J., Shankle, R., and Cotman, C. W. (1996) Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol. Aging 17, 921–933.

    PubMed  CAS  Google Scholar 

  79. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    PubMed  CAS  Google Scholar 

  80. Naslund, J., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., Greengard, P., and Buxbaum, J. D. (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283, 1571–1577.

    PubMed  CAS  Google Scholar 

  81. Chen, G., Chen, K. S., Knox, J., et al. (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408, 975–979.

    PubMed  CAS  Google Scholar 

  82. Gordon, M. N., King, D. L., Diamond, D. M., et al. (2001) Correlation between cognitive deficits and Aβ deposits in transgenic APP+PS1 mice. Neurobiol. Aging 22, 377–385.

    PubMed  CAS  Google Scholar 

  83. Frautschy, S. A., Baird, A., and Cole, G. M. (1991) Effects of injected Alzheimer b-amyloid cores in rat brain. Proc. Natl. Acad. Sci. USA 88, 8362–8366.

    PubMed  CAS  Google Scholar 

  84. Winkler, J., Connor, D. J., Frautschy, S. A., Behl, C., Waite, J. J., Cole, G. M., and Thal, L. J. (1994) Lack of long-term effects after beta-amyloid protein injections in rat brain. Neurobiol. Aging 15, 601–607.

    PubMed  CAS  Google Scholar 

  85. Giovannelli, L., Casamenti, F., Scali, C., Bartolini, L., and Pepeu, G. (1995) Differential effects of amyloid peptides beta-(1–40) and beta-(25–35) injections into the rat nucleus basalis. Neuroscience 66, 781–792.

    PubMed  CAS  Google Scholar 

  86. Giovannelli, L., Scali, C., Faussone-Pellegrini, M. S., Pepeu, G., and Casamenti, F. (1998) Long-term changes in the aggregation state and toxic effects of beta-amyloid injected into the rat brain. Neuroscience 87, 349–357.

    PubMed  CAS  Google Scholar 

  87. Rush, D. K., Aschmies, S., and Merriman, M. C. (1992) Intracerebral beta-amyloid (25–35) produces tissue damage: is it neurotoxic? Neurobiol. Aging 13, 591–594.

    PubMed  CAS  Google Scholar 

  88. Koistinaho, M., Ort, M., Cimadevilla, J. M., Vondrous, R., Cordell, B., Koistinaho, J., Bures, J., and Higgins, L. S. (2001) Specific spatial learning deficits become severe with age in beta-amyloid precursor protein transgenic mice that harbor diffuse beta-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. USA 98, 14,675–14,680.

    CAS  Google Scholar 

  89. Parvathy, S., Davies, P., Haroutunian, V., et al. (2001) Correlation between Abetax-40-, Abetax-42-, and Abetax-43-containing amyloid plaques and cognitive decline. Arch. Neurol. 58, 2025–2032.

    PubMed  CAS  Google Scholar 

  90. Stephan, A., Laroche, S., and Davis, S. (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21, 5703–5714.

    PubMed  CAS  Google Scholar 

  91. Janus, C., Chishti, M. A., and Westaway, D. (2000) Transgenic mouse models of Alzheimer’s disease. Biochim. Biophys. Acta. 1502, 63–75.

    PubMed  CAS  Google Scholar 

  92. Morgan, D., Diamond, D. M., Gottschall, P. E., et al. (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408, 982–985.

    PubMed  CAS  Google Scholar 

  93. Mobley, W. C., Neve, R. L., Prusiner, S. B., and McKinley, M. P. (1988) Nerve growth factor increases mRNA levels for the prion protein and the beta-amyloid protein precursor in developing hamster brain. Proc. Natl. Acad. Sci. USA 85, 9811–9815.

    PubMed  CAS  Google Scholar 

  94. Rossner, S., Ueberham, U., Schliebs, R., Perez-Polo, J. R., and Bigl, V. (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog. Neurobiol. 56, 541–569.

    PubMed  CAS  Google Scholar 

  95. Quon, D., Catalano, R., and Cordell, B. (1990) Fibroblast growth factor induces beta-amyloid precursor mRNA in ghal but not neuronal cultured cells. Biochem. Biophys. Res. Commun. 167, 96–102.

    PubMed  CAS  Google Scholar 

  96. Caporaso, G. L., Gandy, S. E., Buxbaum, J. D., Ramabhadran, T. V., and Greengard, P. (1992) Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA 89, 3055–3059.

    PubMed  CAS  Google Scholar 

  97. Hung, A. Y., Haass, C., Nitsch, R. M., Qiu, W. Q., Citron, M., Wurtman, R. J., Growdon, J. H., and Selkoe, D. J. (1993) Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J. Biol. Chem. 268, 22,959–22,962.

    CAS  Google Scholar 

  98. Savage, M. J., Trusko, S. P., Howland, D. S., et al. (1998) Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol ester. J. Neurosci. 18, 1743–1752.

    PubMed  CAS  Google Scholar 

  99. Haring, R., Fisher, A., Marciano, D., Pittel, Z., Kloog, Y., Zuckerman, A., Eshhar, N., and Heldman, E. (1998) Mitogen-activated protein kinase-dependent and protein kinase C-dependent pathways link the ml muscarinic receptor to beta-amyloid precursor protein secretion. J. Neurochem. 71, 2094–2103.

    PubMed  CAS  Google Scholar 

  100. Johnson-Wood, K., Lee, M., Motter, R., et al. (1997) Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl. Acad. Sci. USA 94, 1550–1555.

    PubMed  CAS  Google Scholar 

  101. Koo, E. H. and Squazzo, S. L. (1994) Evidence that production and release of amyloid b-protein involves the endocytic pathway. J. Biol. Chem. 269, 17,386–17,389.

    CAS  Google Scholar 

  102. Perez, R. G., Squazzo, S. L., and Koo, E. H. (1996) Enhanced release of amyloid beta-protein from codon 670/671 “Swedish” mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. J. Biol. Chem. 271, 9100–9107.

    PubMed  CAS  Google Scholar 

  103. Cataldo, A. M., Barnett, J. L., Pieroni, C., and Nixon, R. A. (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J. Neurosci. 17, 6142–6151.

    PubMed  CAS  Google Scholar 

  104. Nixon, R. A., Cataldo, A. M., Paskevich, P. A., Hamilton, D. J., Wheelock, T. R., and Kanaley-Andrews, L. (1992) The lysosomal system in neurons. Involvement at multiple stages of Alzheimer’s disease pathogenesis. Ann. NY Acad. Sci. 674, 65–88.

    PubMed  CAS  Google Scholar 

  105. Gouras, G. K., Tsai, J., Naslund, J., et al. (2000) Intraneuronal Ab42 accumulation in human brain. Am. J. Pathol. 156, 15–20.

    PubMed  CAS  Google Scholar 

  106. D’Andrea, M. R., Nagele, R. G., Wang, H. Y., Peterson, P. A., and Lee, D. H. (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38, 120–134.

    PubMed  CAS  Google Scholar 

  107. Soriano, S., Chyung, A. S., Chen, X., Stokin, G. B., Lee, V. M., and Koo, E. H. (1999) Expression of beta-amyloid precursor protein-CD3gamma chimeras to demonstrate the selective generation of amyloid beta(1–40) and amyloid beta(1–42) peptides within secretory and endocytic compartments. J. Biol. Chem. 274, 32,295–32,300.

    CAS  Google Scholar 

  108. Grant, S. M., Ducatenzeiler, A., Szyf, M., and Cuello, A. C. (2000) Aβ immunoreactive material is present in several intracellular compartments in transfected, neuronally differentiated, P19 cells expressing the human amyloid β-protein precursor. J. Alz. Dis. 2, 207–222.

    CAS  Google Scholar 

  109. Hartmann, T. (1999) Intracellular biology of Alzheimer’s disease amyloid beta peptide. Eur. Arch. Psychiatry Clin. Neurosci. 249, 291–298.

    PubMed  CAS  Google Scholar 

  110. Cook, D. G., Forman, M. S., Sung, J. C., et al. (1997) Alzheimer’s A beta(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med. 3, 1021–1023.

    PubMed  CAS  Google Scholar 

  111. Greenfield, J. P., Tsai, J., Gouras, G. K., et al. (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc. Natl. Acad. Sci. USA 96, 742–747.

    PubMed  CAS  Google Scholar 

  112. Hartmann, T., Bieger, S. C., Bruhl, B., et al. (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nature Med. 3, 1016–1020.

    PubMed  CAS  Google Scholar 

  113. Petanceska, S. S., Seeger, M., Checler, F., and Gandy, S. (2000) Mutant presenilin 1 increases the levels of Alzheimer amyloid beta-peptide Abeta42 in late compartments of the constitutive secretory pathway. J. Neurochem. 74, 1878–1884.

    PubMed  CAS  Google Scholar 

  114. Martin, B. L., Schrader-Fischer, G., Busciglio, J., Duke, M., Paganetti, P., and Yankner, B. A. (1995) Intracellular accumulation of beta-amyloid in cells expressing the Swedish mutant amyloid precursor protein. J. Biol. Chem. 270, 26,727–26,730.

    CAS  Google Scholar 

  115. Higaki, J., Quon, D., Zhong, Z., and Cordell, B. (1995) Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14, 651–659.

    PubMed  CAS  Google Scholar 

  116. Yamazaki, T., Selkoe, D. J., and Koo, E. H. (1995) Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons. J. Cell Biol. 129, 431–442.

    PubMed  CAS  Google Scholar 

  117. Tienari, P. J., Ida, N., Ikonen, E., et al. (1997) Intracellular and secreted Alzheimer b-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 94, 4125–4130.

    PubMed  CAS  Google Scholar 

  118. Haass, C., Hung, A. Y., Schlossmacher, M. G., et al. (1993) Normal cellular processing of the beta-amyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules. Ann. NY Acad. Sci. 695, 109–116.

    PubMed  CAS  Google Scholar 

  119. Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13, 1676–1687.

    PubMed  CAS  Google Scholar 

  120. Lorenzo, A. and Yankner, B. A. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91, 12,243–12,247.

    CAS  Google Scholar 

  121. Roher, A. E., Baudry, J., Chaney, M. O., Kuo, Y. M., Stine, W. B., and Emmerling, M. R. (2000) Oligomerizaiton and fibril assembly of the mayloid-beta protein. Biochim. Biophys. Acta. 1502, 31–43.

    PubMed  CAS  Google Scholar 

  122. Skovronsky, D. M., Doms, R. W., and Lee, V. M. (1998) Detection of a novel intraneuronal pool of insoluble amyloid beta protein that accumulates with time in culture. J. Cell Biol. 141, 1031–1039.

    PubMed  CAS  Google Scholar 

  123. Lee, S. J., Liyanage, U., Bickel, P. E., Xia, W., Lansbury, P. T., Jr., and Kosik, K. S. (1998) A detergent-insoluble membrane compartment contains A beta in vivo. Nat. Med. 4, 730–734.

    PubMed  CAS  Google Scholar 

  124. Mochizuki, A., Tamaoka, A., Shimohata, A., Komatsuzaki, Y., and Shoji, S. (2000) Abeta42 positive non-pyramidal neurons around amyloid plaques in Alzheimer’s disease. Lancet 355, 42–43.

    PubMed  CAS  Google Scholar 

  125. Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.

    PubMed  CAS  Google Scholar 

  126. Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245, 417–420.

    PubMed  CAS  Google Scholar 

  127. Yankner, B. A., Caceres, A., and Duffy, L. K. (1990) Nerve growth factor potentiates the neurotoxicity of beta amyloid. Proc. Natl. Acad. Sci. USA 87, 9020–9023.

    PubMed  CAS  Google Scholar 

  128. Neve, R. L. and Robakis, N. K. (1998) Alzheimer’s disease: a re-examination of the amyloid hypothesis. Trends Neurosci. 21, 15–19.

    PubMed  CAS  Google Scholar 

  129. Kowall, N. W., Beal, M. F., Busciglio, J., Duffy, L. K., and Yankner, B. A. (1991) An in vivo model for the neurodegenerative effects of b amyloid and protection by substance P. Proc. Natl. Acad. Sci. USA 88, 7247–7251.

    PubMed  CAS  Google Scholar 

  130. Harkany, T., O’Mahony, S., Kelly, J. P., et al. (1998) Beta-amyloid(Phe(SO3H)24)25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav. Brain Res. 90, 133–145.

    PubMed  CAS  Google Scholar 

  131. Geula, C., Wu, C. K., Saroff, D., Lorenzo, A., Yuan, M., and Yankner, B. A. (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med. 4, 827–831.

    PubMed  CAS  Google Scholar 

  132. Knauer, M. F., Soreghan, B., Burdick, D., Kosmoski, J., and Glabe, C. G. (1992) Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc. Natl. Acad. Sci. USA 89, 7437–7441.

    PubMed  CAS  Google Scholar 

  133. Xia, W., Zhang, J., Ostaszewski, B. L., et al. (1998) Presenilin 1 regulates the processing of beta-amyloid precursor protein C-terminal fragments and the generation of amyloid beta-protein in endoplasmic reticulum and Golgi. Biochemistry 37, 16,465–16,471.

    CAS  Google Scholar 

  134. Chui, D. H., Tanahashi, H., Ozawa, K., et al. (1999) Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med. 5, 560–564.

    PubMed  CAS  Google Scholar 

  135. Wirths, O., Multhaup, G., Czech, C., Blanchard, V., et al. (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 306, 116–120.

    PubMed  CAS  Google Scholar 

  136. Gyure, K. A., Durham, R., Stewart, W. F., Smialek, J. E., and Troncoso, J. C. (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch. Pathol. Lab. Med. 125, 489–492.

    PubMed  CAS  Google Scholar 

  137. Yang, A. J., Knauer, M., Burdick, D. A., and Glabe, C. (1995) Intracellular A beta 1–42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J. Biol. Chem. 270, 14,786–14,792.

    CAS  Google Scholar 

  138. Burdick, D., Kosmoski, J., Knauer, M. F., and Glabe, C. G. (1997) Preferential adsorption, internalization and resistance to degradation of the major isoform of the Alzheimer’s amyloid peptide, A beta 1–42, in differentiated PC12 cells. Brain Res. 746, 275–284.

    PubMed  CAS  Google Scholar 

  139. Smith, M. A. and Perry, G. (1995) Free radical damage, iron, and Alzheimer’s disease. J. Neurol. Sci. 134 Suppl, 92–94.

    PubMed  Google Scholar 

  140. Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., and Ball, M. J. (1993) Beta-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 10,836–10,840.

    CAS  Google Scholar 

  141. Bahr, B. A., Hoffman, K. B., Yang, A. J., Hess, U. S., Glabe, C. G., and lynch, G. (1998) Amyloid beta protein is internalized selectively by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal fragments of the amyloid precursor protein. J. Comp Neurol. 397, 139–147.

    PubMed  CAS  Google Scholar 

  142. Burdick, D., Soreghan, B., Kwon, M., et al. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J. Biol. Chem. 267, 546–554.

    PubMed  CAS  Google Scholar 

  143. Yang, A. J., Chandswangbhuvana, D., Shu, T., Henschen, A., and Glabe, C. G. (1999) Intracellular accumulation of insoluble, newly synthesized abetan-42 in amyloid precursor protein-transfected cells that have been treated with Abeta1-42. J. Biol. Chem. 274, 20,650–20,656.

    CAS  Google Scholar 

  144. Cataldo, A. M., Thayer, C. Y., Bird, E. D., Wheelock, T. R., and Nixon, R. A. (1990) Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer’s disease: evidence for a neuronal origin. Brain Res. 513, 181–192.

    PubMed  CAS  Google Scholar 

  145. Omar, R., Pappolla, M., Argani, I., and Davis, K. (1993) Acid phosphatase activity in senile plaques and cerebrospinal fluid of patients with Alzheimer’s disease. Arch. Pathol. Lab. Med. 117, 166–169.

    PubMed  CAS  Google Scholar 

  146. Sze, C. I., Troncoso, J. C., Kawas, C., Mouton, P., Price, D. L., and Martin, L. J. (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J. Neuropathol. Exp. Neurol. 56, 933–944.

    PubMed  CAS  Google Scholar 

  147. Masliah, E., Mallory, M., Hansen, L., DeTeresa, R., Alford, M., and Terry, R. (1994) Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci. Lett. 174, 67–72.

    PubMed  CAS  Google Scholar 

  148. Koistinaho, M., Kettunen, M. I., Goldsteins, G., et al. (2002) Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc. Natl. Acad. Sci. USA 99, 1610–1615.

    PubMed  CAS  Google Scholar 

  149. Tabira, T., Chui, D. H., and Kuroda, S. (2002) Significance of intracellular Abeta42 accumulation in Alzheimer’s disease. Front Biosci. 7, a44-a49.

    PubMed  CAS  Google Scholar 

  150. LaFerla, F. M., Troncoso, J. C., Strickland, D. K., Kawas, C. H., and Jay, G. (1997) Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Abeta stabilization. J. Clin. Invest 100, 310–320.

    PubMed  CAS  Google Scholar 

  151. Hsia, A. Y., Masliah, E., McConlogue, L., et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96, 3228–3233.

    PubMed  CAS  Google Scholar 

  152. Himmler, A., Drechsel, D., Kirschner, M. W., and Martin, D. W., Jr. (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell Biol. 9, 1381–1388.

    PubMed  CAS  Google Scholar 

  153. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., and Crowther, R. A. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–526.

    PubMed  CAS  Google Scholar 

  154. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E., and Klug, A. (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA 85, 4051–4055.

    PubMed  CAS  Google Scholar 

  155. Otvos, L., Jr., Feiner, L., Lang, E., Szendrei, G. I., Goedert, M., and Lee, V. M. (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J. Neurosci. Res. 39, 669–673.

    PubMed  CAS  Google Scholar 

  156. Crowther, T., Goedert, M., and Wischik, C. M. (1989) The repeat region of microtubule-associated protein tau forms part of the core of the paired helical filament of Alzheimer’s disease. Ann. Med. 21, 127–132.

    PubMed  CAS  Google Scholar 

  157. Crowther, R. A., Olesen, O. F., Jakes, R., and Goedert, M. (1992) The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease. FEBS Lett. 309, 199–202.

    PubMed  CAS  Google Scholar 

  158. Crowther, R. A., Olesen, O. F., Smith, M. J., Jakes, R., and Goedert, M. (1994) Assembly of Alzheimer-like filaments from full-length tau protein. FEBS Lett. 337, 135–138.

    PubMed  CAS  Google Scholar 

  159. Mandelkow, E. M. and Mandelkow, E. (1998) Tau in Alzheimer’s disease. Trends Cell Biol. 8, 425–427.

    PubMed  CAS  Google Scholar 

  160. Iqbal, K., Alonso, A. D., Gondal, J. A., et al. (2000) Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J. Neural Transm. 59 Suppl, 213–222.

    CAS  Google Scholar 

  161. Dustin, P. and Flament-Durand, J. (1982) Disturbances of axoplasmic transport in Alzheimer’s disease, in Axoplasmic Transport and Pathology. (Weiss, D. G. and Gorio, A., eds.) Springer-Verlag, Berlin, pp. 131–136.

    Google Scholar 

  162. Grundke-Iqbal, I. and Iqbal, K. (1999) Tau pathology generated by overexpression of tau. Am. J. Pathol. 155, 1781–1785.

    PubMed  CAS  Google Scholar 

  163. Mena, R., Wischik, C. M., Novak, M., Milstein, C., and Cuello, A. C. (1991) A progressive deposition of paired helical filaments (PHF) in the brain characterizes the evolution of dementia in Alzheimer’s disease. An immunocytochemical study with a monoclonal antibody against the PHF core. J. Neuropathol. Exp. Neurol. 50, 474–490.

    PubMed  CAS  Google Scholar 

  164. Wischik, C. M., Harrington, C. R., Mukaetova-Ladinska, E. B., Novak, M., Edwards, P. C., and McArthur, F. K. (1992) Molecular characterization and measurement of Alzheimer’s disease pathology: implications for genetic and environmental aetiology. Ciba Found. Symp. 169, 268–293.

    PubMed  CAS  Google Scholar 

  165. Holzer, M., Holzapfel, H.-P., Zedlick, D., Brückner, M. K., and Arendt, T. (1994) Abnormally phosphorylated tau protein in Alzheimer’s disease: Heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 63, 499–516.

    PubMed  CAS  Google Scholar 

  166. Trojanowski, J. Q. and Lee, V. M. (1994) Paired helical filament tau in Alzheimer’s disease. The kinase connection. Am. J. Pathol. 144, 449–453.

    PubMed  CAS  Google Scholar 

  167. Jellinger, K. A. and Bancher, C. (1998) Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol. 8, 367–376.

    PubMed  CAS  Google Scholar 

  168. Gotz, J., Chen, F., van Dorpe, J., and Nitsch, R. M. (2001) Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491–1495.

    PubMed  CAS  Google Scholar 

  169. Lewis, J., Dickson, D. W., Lin, W. L., et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.

    PubMed  CAS  Google Scholar 

  170. Buee, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., and Hof, P. R. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev. 33, 95–130.

    PubMed  CAS  Google Scholar 

  171. Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P., and Anderton, B. H. (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58–62.

    PubMed  CAS  Google Scholar 

  172. Tomidokoro, Y., Harigaya, Y., Matsubara, E., et al. (2001) Brain Abeta amyloidosis in APPsw mice induces accumulation of presenilin-1 and tau. J. Pathol. 194, 500–506.

    PubMed  CAS  Google Scholar 

  173. Takahashi, M., Tomizawa, K., Sato, K., Ohtake, A., and Omori, A. (1995) A novel tau-tubulin kinase from bovine brain. FEBS Lett. 372, 59–64.

    PubMed  CAS  Google Scholar 

  174. Drewes, G., Lichtenberg-Kraag, B., Doring, F., et al. (1992) Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J. 11, 2131–2138.

    PubMed  CAS  Google Scholar 

  175. Liu, W. K., Williams, R. T., Hall, F. L., Dickson, D. W., and Yen, S. H. (1995) Detection of a Cdc2-related kinase associated with Alzheimer paired helical filaments. Am. J. Pathol. 146, 228–238.

    PubMed  CAS  Google Scholar 

  176. Drewes, G., Ebneth, A., Preuss, U., et al. (1997) A novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308.

    PubMed  CAS  Google Scholar 

  177. Johnson, G. V. (1992) Differential phosphorylation of tau by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II: metabolic and functional consequences. J. Neurochem. 59, 2056–2062.

    PubMed  CAS  Google Scholar 

  178. Litersky, J. M. & Johnson, G. V. (1992) Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J. Biol. Chem. 267, 1563–1568.

    PubMed  CAS  Google Scholar 

  179. Greenwood, J. A., Scott, C. W., Spreen, R. C., Caputo, C. B., and Johnson, G. V. (1994) Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J. Biol. Chem. 269, 4373–4380.

    PubMed  CAS  Google Scholar 

  180. Goedert, M., Cuenda, A., Craxton, M., Jakes, R., and Cohen, P. (1997) Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 16, 3563–3571.

    PubMed  CAS  Google Scholar 

  181. Reynolds, C. H., Utton, M. A., Gibb, G. M., Yates, A., and Anderton, B. H. (1997) Stress-activated protein kinase/c-jun N-terminal kinase phosphorylates tau protein J. Neurochem. 68, 1736–1744.

    PubMed  CAS  Google Scholar 

  182. Imahori, K., Hoshi, M., Ishiguro, K., et al. (1998) Possible role of tau protein kinases in pathogenesis of Alzheimer’s disease. Neurobiol. Aging 19, S93-S98.

    PubMed  CAS  Google Scholar 

  183. Augustinack, J. C., Schneider, A., Mandelkow, E. M., and Hyman, B. T. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta. Neuropathol. (Berl.) 103, 26–35.

    CAS  Google Scholar 

  184. Perry, G., Roder, H., Nunomura, A., et al. (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. NeuroReport 10, 2411–2415.

    PubMed  CAS  Google Scholar 

  185. Knowles, R. B., Chin, J., Ruff, C. T., and Hyman, B. T. (1999) Demonstration by fluorescence resonance energy transfer of a close association between activated MAP kinase and neurofibrillary tangles: implications for MAP kinase activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  186. Ferrer, I., Blanco, R., Carmona, M., and Puig, B. (2001) Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J. Neural Transm. 108, 1397–1415.

    PubMed  CAS  Google Scholar 

  187. Greenberg, S. M., Koo, E. H., Selkoe, D. J., Qiu, W. Q., and Kosik, K. S. (1994) Secreted β-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc. Natl. Acad. Sci. USA 91, 7104–7108.

    PubMed  CAS  Google Scholar 

  188. Grant, S. M., Shankar, S. L., Chalmers-Redman, R. M. E., Tatton, W. G., Szyf, M., and Cuello, A. C. (1999) Mitochondrial abnormalities in neuroectodermal cells stably expressing human amyloid precursor protein (hAPP751). NeuroReport 10, 41–46.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Claudio Cuello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echeverria, V., Cuello, A.C. Intracellular A-beta amyloid, A sign for worse things to come?. Mol Neurobiol 26, 299–316 (2002). https://doi.org/10.1385/MN:26:2-3:299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:26:2-3:299

Index Entries

Navigation