Skip to main content
Log in

The cerebral proteopathies

Neurodegenerative disorders of protein conformation and assembly

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The abnormal assembly and deposition of specific proteins in the brain is the probable cause of most neurodegenerative disease afflicting the elderly. These “cerebral proteopathies” include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), prion diseases, and a variety of other disorders. Evidence is accumulating that the anomalous aggregation of the proteins, and not a loss of protein function, is central to the pathogenesis of these diseases. Thus, therapeutic strategies that reduce the production, accumulation, or polymerization of pathogenic proteins might be applicable to a wide range of some of the most devastating diseases of old age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warzok R. W., Kessler C., Apel G., Schwarz A., Egensperger R., Schreiber D., et al. (1998) Apolipoprotein E4 promotes incipient Alzheimer pathology in the elderly. Alzheimer Dis. Assoc. Disord. 12, 33–39.

    Article  PubMed  CAS  Google Scholar 

  2. Walker L. C., Pahnke J., Madauss M., Vogelgesang S., Pahnke A., Herbst E. W., et al. (2000) Apolipoprotein E4 promotes the early deposition of Aβ42 and then Aβ40 in the elderly. Acta Neuropathol. 100, 36–42.

    Article  PubMed  CAS  Google Scholar 

  3. Kawas C. H. and Katzman R. (1999) Epidemiology of dementia and Alzheimer disease, in Alzheimer Disease, 2nd ed. (Terry R. D., Katzman R., Bick K. L., and Sisodia S. S., eds.), Lippincott Williams and Wilkins, Philadelphia, pp. 95–116.

    Google Scholar 

  4. St. George-Hyslop P. H. (1999) Molecular genetics of Alzheimer disease, in Alzheimer Disease, 2nd ed. (Terry R. D., Katzman R., Bick K. L., and Sisodia S. S., eds.), Lippincott Williams and Wilkins, Philadelphia, pp. 311–326.

    Google Scholar 

  5. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  6. Poirier J., Davignon J., Bouthillier D., Kogan S., Bertrand P., and Gauthier S. (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342, 697–699.

    Article  PubMed  CAS  Google Scholar 

  7. Selkoe D. J. (1999) Biology of β-amyloid precursor protein and the mechanism of Alzheimer disease, in Alzheimer Disease, 2nd ed. (Terry R. D., Katzman R., Bick K. L. and Sisodia S. S., eds.) Lippincott Williams and Wilkins, Philadelphia, pp. 293–310.

    Google Scholar 

  8. Hutton M., Pérez-Tur J., and Hardy, J. (1998) Genetics of Alzheimer’s disease. Essays Biochem. 33, 117–131.

    PubMed  CAS  Google Scholar 

  9. Tolnay M. and Probst A. (1999) Tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol. Appl. Neurobiol. 25, 171–187.

    Article  PubMed  CAS  Google Scholar 

  10. Vogelsberg-Ragaglia V. V., Trojanowski J. Q., and Lee V. M.-Y. (1999) Cell biology of tau and cytoskeletal pathology in Alzheimer disease, in Alzheimer Disease, 2nd ed. (Terry R. D., Katzman R., Bick K. L., and Sisodia S. S., eds), Lippincott Williams and Wilkins, Philadelphia, pp. 359–372.

    Google Scholar 

  11. Carrell R. W. and Lomas D. A. (1997) Conformational disease. Lancet 350, 134–138.

    Article  PubMed  CAS  Google Scholar 

  12. Münch G., Cunningham A. M., Riederer P., and Braak E. (1998) Advanced glycation endproducts are associated with Hirano bodies in Alzheimer’s disease. Brain Res. 796, 307–310.

    Article  PubMed  Google Scholar 

  13. Vincent I., Zheng J.-H., Dickson D. W., Kress Y., and Davies P. (1998) Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol. Aging 19, 287–296.

    Article  PubMed  CAS  Google Scholar 

  14. Norlund M. A., Lee J. M., Zainelli G. M., and Muma N. A. (1999) Elevated transglutaminase-induced bonds in PHF tau in Alzheimer’s disease. Brain Res. 851, 154–163.

    Article  PubMed  CAS  Google Scholar 

  15. Lesort M., Tucholski J., Miller M. L., and Johnson G. V. (2000) Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog. Neurobiol. 61, 439–463.

    Article  PubMed  CAS  Google Scholar 

  16. van Leeuwen F. W., Burbach J. P. H., and Hol E. M. (1998) Mutations in RNA: a first example of molecular misreading in Alzheimer’s disease. Trends Neurosci. 21, 331–335.

    Article  PubMed  Google Scholar 

  17. Kelly J. W. (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8, 101–106.

    Article  PubMed  CAS  Google Scholar 

  18. Walker L. C. and LeVine H. III (2000) The cerebral proteopathies. Neurobiol. Aging 21, 559–561.

    Article  PubMed  CAS  Google Scholar 

  19. Kakizuka A. (1998) Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet. 14, 396–402.

    Article  PubMed  CAS  Google Scholar 

  20. Koo E. H., Lansbury P. T. Jr., and Kelly J. W. (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 96, 9989,9990.

    Article  PubMed  CAS  Google Scholar 

  21. Tran P. B. and Miller R. J. (1999) Aggregates in neurodegenerative disease: crowds and power? Trends Neurosci. 22, 194–197.

    Article  PubMed  CAS  Google Scholar 

  22. Hu B. R., Martone M. E., Jones Y. Z., and Liu C. L. (2000) Protein aggregation after transient cerebral ischemia. J. Neurosci. 20, 3191–3199.

    PubMed  CAS  Google Scholar 

  23. Dobson C. M. (1999) Protein misfolding, evolution and disease. Trends Biol. Sci. 24, 329–332.

    Article  CAS  Google Scholar 

  24. Glenner G. G. (1980) Amyloid deposits and amyloidosis: the beta-fibrilloses (Parts 1 and 2). N. Engl. J. Med. 302, 1283–1292; 1333–1343.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz P. (1972) Ueber den Ursprung der Bezeichnung “Amyloidose”. Ein Vorschlag zu ihrer Ersetzung. Zentralbl. Algem. Pathol. 115, 453–462.

    CAS  Google Scholar 

  26. Cohen A. S. (1967) Amyloidosis. N. Engl. J. Med. 277, 522–530.

    Article  PubMed  CAS  Google Scholar 

  27. Ghiso J., Wisniewski T., and Frangione B. (1994) Unifying features of systemic and cerebral amyloidosis. Mol. Neurobiol. 8, 49–64.

    PubMed  CAS  Google Scholar 

  28. Solomon A. and Weiss D. T. (1995) Protein and host factors implicated in the pathogenesis of light chain amyloidosis (AL amyloidosis). Amyloid: Intl. J. Exp. Clin. Invest. 2, 269–279.

    CAS  Google Scholar 

  29. Kisilevsky R. and Fraser P. E. (1997) A Beta amyloidogenesis: unique, or variation on a systemic theme? Crit. Rev. Biochem. Mol. Biol. 32, 361–404.

    PubMed  CAS  Google Scholar 

  30. Kahn S. E., Andrikopoulos S., and Verchere C. B. (1999) Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48, 241–253.

    Article  PubMed  CAS  Google Scholar 

  31. Terry R. D. (1996) The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 55, 1023–1025.

    PubMed  CAS  Google Scholar 

  32. Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Abetal-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  33. Lue L.-F., Kuo Y.-M., Roher A. E., Brachova L., Shen Y., Sue L., Beach T., Kurth J. H., Rydel R. E., and Rogers J. (1999) Soluble amyloid beta-peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155, 853–862.

    PubMed  CAS  Google Scholar 

  34. McLean C. A., Cherny R. A., Fraser F. W., Fuller S. J., Smith M. J., Beyreuther K., et al. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866.

    Article  PubMed  CAS  Google Scholar 

  35. Mucke L., Masliah E., Yu G. -Q., Mallory M., Rockenstein E. M., Tatsuno G., et al. (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058.

    PubMed  CAS  Google Scholar 

  36. Ward R. V., Jennings K. H., Jepras R., Neville W., Owen D. E., Hawkins J., et al. (2000) Fractionation and characterization of oligomeric, protofibrillar and fibrillar forms of β-amyloid peptide. Biochem. J. 348, 137–144.

    Article  PubMed  CAS  Google Scholar 

  37. Clark A., Morris J. F., Scott L. A., McLay A., Foulis A. K., Bodkin N. L., and Hansen B. C. (1991) Intracellular formation of amyloid fibrils in B-cells of human insulinoma and pre-diabetic monkey islets, in Amyloid and Amyloidosis (Natvig J. B., ed.) Kluwer, Amsterdam, pp. 453–456.

    Google Scholar 

  38. Janson J., Ashley R. H., Harrison D., McIntyre S., and Butler P. C. (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48, 491–498.

    Article  PubMed  CAS  Google Scholar 

  39. Hoeppener J. W. M., Ahren B., and Lips C. J. M. (2000) Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 343, 411–419.

    Article  Google Scholar 

  40. Eaton W. A. and Hofrichter J. (1995) The biophysics of sickle cell hydroxyurea therapy. Science 268, 1142,1143.

    Article  PubMed  CAS  Google Scholar 

  41. Westermark P. (1997) Classification of amyloid fibril proteins and their precursors: An ongoing discussion. Amyloid: Intl. J. Exp. Clin. Invest. 4, 216–218.

    Google Scholar 

  42. Worster-Drought C., Hill T. R., and McMenemey W. H. (1933) Familial presenile dementia with spastic paralysis. J. Neurol. Psychopathol. 14, 27–34.

    Article  Google Scholar 

  43. Vidal R., Frangione B., Rostagno A., Mead S., Revesz T., Plant G., and Ghiso J. (1999) A stopcodon mutation in the BRI gene associated with familial British dementia. Nature 399, 776–781.

    Article  PubMed  CAS  Google Scholar 

  44. Vidal R. G., Revesz T., Rostagno A., Bek T., Braendgaard H., Plant G., et al. (2000) A decamer duplication in the BRI gene originates a de-novo amyloid peptide that causes dementia in a Danish kindred. Neurobiol. Aging 21, S58.

    Google Scholar 

  45. Davis R. L., Shrimpton A. E., Holohan P. D., Bradshaw C., Feiglin D., Collins G. H., et al. (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401, 376–379.

    PubMed  CAS  Google Scholar 

  46. Yerby M. S., Shaw C.-M., and Watson J. M. D. (1986) Progressive dementia and epilepsy in a young adult: unusual intraneuronal inclusions. Neurology 36, 68–71.

    PubMed  CAS  Google Scholar 

  47. Lomas D. A., Evans D. L., Finch J. T., and Carrell R. W. (1992) The mechanism of Z alpha1-antitrypsin accumulation in the liver. Nature 357, 605–607.

    Article  PubMed  CAS  Google Scholar 

  48. Ikeda H., Yamaguchi M., Sugai S., Aze Y., Narumiya S., and Kakizuka A. (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature Genet. 13, 196–202.

    Article  PubMed  CAS  Google Scholar 

  49. Becher M. W., Kotzuk J. A., Sharp A. H., Davies S. W., Bates G. P., Price D. L., and Ross C. A. (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis. 4, 387–397.

    Article  PubMed  CAS  Google Scholar 

  50. Bates G. P., Mangiarini L., and Davies S. W. (1998) Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol. 8, 699–714.

    Article  PubMed  CAS  Google Scholar 

  51. Turmaine M., Raza A., Mahal A., Mangiarini L., Bates G. P., and Davies S. W. (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 97, 8093–8097.

    Article  PubMed  CAS  Google Scholar 

  52. Prusiner S. B. (1997) Prion diseases and the BSE crisis. Science 278, 245–251.

    Article  PubMed  CAS  Google Scholar 

  53. Johnson R. T. and Gibbs C. J. (1998) Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N. Engl. J. Med. 339, 1994–2004.

    Article  PubMed  CAS  Google Scholar 

  54. DeArmond S. J. and Prusiner S. B. (1995) Etiology and pathogenesis of prion diseases. Am. J. Pathol. 146, 785–811.

    PubMed  CAS  Google Scholar 

  55. Gajdusek D. C. (1994) Spontaneous generation of infectious nucleating amyloids in the transmissible and nontransmissible cerebral amyloidoses. Mol. Neuriobiol. 8, 1–13.

    CAS  Google Scholar 

  56. Aguzzi A. and Weissmann C. (1997) Prion research: the next frontiers. Nature 389, 795–798.

    Article  PubMed  CAS  Google Scholar 

  57. Prusiner S. B., Safar J., Cohen F. E., and DeArmond S. J. (1999) The prion disease, in Alzheimer Disease, 2nd ed. (Terry R. D., Katzman R., Bick K. L., Sisodia S. S., eds.) Lippincott Williams and Wilkins, Philadelphia, pp. 161–179.

    Google Scholar 

  58. Jarrett J. T. and Lansbury P. T. Jr. (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  59. Lansbury P. T. Jr. (1997) Structural neurology: Are seeds at the root of neuronal degeneration? Neuron 19, 1151–1154.

    Article  PubMed  CAS  Google Scholar 

  60. Kisilevsky R. (1996) Anti-amyloid drugs: potential in the treatment of diseases associated with aging. Drugs Aging 8, 75–83.

    PubMed  CAS  Google Scholar 

  61. Serio T. R., Cashikar A. G., Kowal A. S., Sawicki G. J., Moslehi, J. J., Serpell L., et al. (2000) Nucleated conformational conversion and the replication of conformation information by a prion determinant. Science 289, 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  62. Goudsmit J., Morrow C. H., Asher D. M., Yanagihara R. T., Masters C. L., Gibbs C. J. Jr., and Gadjusek D. C. (1980) Evidence for and against the transmissibility of Alzheimer disease. Neurology 30, 945–950.

    PubMed  CAS  Google Scholar 

  63. Manuelidis E. E. and Manuelidis L. (1991) Search for a transmissible agent in Alzheimer’s disease: studies of human buffy coat. Curr. Top. Microbiol. Immun. 172, 275–280.

    CAS  Google Scholar 

  64. Godec M. S., Asher D. M., Kozachuk W. E., Masters C. L., Rubi J. U., Payne J. A., et al. (1994) Blood buffy coat from Alzheimer’s disease patients and their relatives does not transmit spongiform encephalopathy to hamsters. Neurology 44, 1111–1115.

    PubMed  CAS  Google Scholar 

  65. Baker H. F., Ridley, R. M., Duchen L. W., Crow T. J., and Bruton C. J. (1994) Induction of beta (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol. Neurobiol. 8, 25–39.

    PubMed  CAS  Google Scholar 

  66. Kane M. D., Lipinski W. J., Callahan M. J., Bian F., Durham R. A., Schwarz R. D., et al. (2000) Evidence for seeding of beta-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611.

    PubMed  CAS  Google Scholar 

  67. Hsiao, K., Chapman P., Nilsen, S., Eckman C., Harigaya Y., Younkin S., et al. (1996) Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  68. Walker L. C., Price D. L., Voytko M. L., and Schenk D. B. (1994) Labeling of cerebral amyloid in vivo with a monoclonal antibody. J. Neuropathol. Exp. Neurol. 53, 377–383.

    PubMed  CAS  Google Scholar 

  69. Schenk D., Barbour R., Dunn W., Gordon G., Grajeda H., Guido T., et al. (1999) Immunization with amyloid-beta attenuates Alzheimerdisease-like pathology in the PDAPP mouse. Nature 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  70. Bard F., Cannon C., Barbour R., Burke R.-L., Games D., Grajeda H., et al. (2000) Peripherally administered antibodies against amyloid betapeptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919.

    Article  PubMed  CAS  Google Scholar 

  71. Esler W. P., Stimson E. R., Jennings J. M., Vinters H. V., Ghilardi J. R., Lee J. P., et al. (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39, 6288–6295.

    Article  PubMed  CAS  Google Scholar 

  72. Vassar R., Bennett B. D., Babu-Khan S., Kahn S., Mendiaz E. A., Denis P., et al. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741.

    Article  PubMed  CAS  Google Scholar 

  73. Farzan M., Schnitzler C. E., Vasilieva N., Leung D., and Choe H. (2000) BACE2, a beta-secretase homology, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein. Proc. Natl. Acad. Sci. USA 97, 9712–9717.

    Article  PubMed  CAS  Google Scholar 

  74. Selkoe D. J. and Wolfe M. S. (2000) In search of gamma-secretase: presenilin at the cutting edge. Proc. Natl. Acad. Sci. USA 97, 5690–5692.

    Article  PubMed  CAS  Google Scholar 

  75. LeVine H. III (in press, 2000) Protein mis-folding and neurodegenerative disease: therapeutic opportunities, in Drug Discovery Strategy and Techniques (Makriyannis A. and Biegel D., eds.), Marcel Dekker, New York.

    Google Scholar 

  76. Soto C., Sigurdsson E. M., Morelli L., Kumar R. A., Castano E. M., and Frangione B. (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nature Med. 4, 822–826.

    Article  PubMed  CAS  Google Scholar 

  77. Findeis M. A. (2000) Approaches to discovery and characterization of inhibitors of amyloid beta-peptide polymerization. Biochim. Biophys. Acta 1502, 76–84.

    PubMed  CAS  Google Scholar 

  78. Solomon B., Koppel R., Frankel D., and Hanan-Aharon E. (1997) Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA 94, 4109–4112.

    Article  PubMed  CAS  Google Scholar 

  79. LeVine H. III and Scholten J. D. (1999) Screening for pharmacologic inhibitors of amyloid fibril formation. Meth. Enzymol. 309, 467–476.

    Article  PubMed  CAS  Google Scholar 

  80. Heiser V., Scherzinger E., Boeddrich A., Nordhoff E., Lurz R., Schugardt N., Lehrach H., and Wanker E. E. (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc. Natl. Acad. Sci. 97, 6739–6744.

    Article  PubMed  CAS  Google Scholar 

  81. Sunde M., Serpell L. C., Bartlam M., Fraser P. E., Pepys M. B., and Blake C. C. F. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739.

    Article  PubMed  CAS  Google Scholar 

  82. Johnston J. A., Ward C. L., and Kopito, R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  83. Botto M., Hawkins P. N., Bickerstaff M. C. M., Herbert J., Bygrave A. E., McBride A., et al. (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nature Med. 3, 855–859.

    Article  PubMed  CAS  Google Scholar 

  84. Brening W., Roy J., Giasson B., Figlewicz D. A., Mushynski W. E., and Durham H. D. (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72, 693–699.

    Article  Google Scholar 

  85. Igarashi S., Koide R., Shimohata T., Yamada M., Hayashi Y., Takano H., et al. (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nature Genet. 18, 111–117.

    Article  PubMed  CAS  Google Scholar 

  86. Hampton R. Y. (2000) E. R. stress response: getting the UPR hand on misfolded proteins. Curr. Biol. 10, R518-R521.

    Article  PubMed  CAS  Google Scholar 

  87. Iwata N., Tsubuki S., Takaki Y., Watanabe K., Sekiguchi M., Hosoki E., et al. (2000) Identifcation of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nature Med. 6, 143–150.

    Article  PubMed  CAS  Google Scholar 

  88. Saudou F., Finkbeiner S., Devys D., and Greenberg M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  89. Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, L.C., LeVine, H. The cerebral proteopathies. Mol Neurobiol 21, 83–95 (2000). https://doi.org/10.1385/MN:21:1-2:083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:21:1-2:083

Index Entries

Navigation