Skip to main content
Log in

Copper-dependent functions for the prion protein

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Prion diseases such as bovine spongiform encephalopathy and Creutzfeldt-Jakob disease are fatal neurodegenerative diseases. These diseases are characterized by the conversion of a normal cellular protein, the prion protein, to an abnormal isoform that is thought to be responsible for both pathogenesis in the disease and the infectious nature of the disease agent. Understanding the biology and metabolism of the normal prion protein is therefore important for understanding the nature of these diseases. This review presents evidence for the normal function of the cellular prion protein, which appears to depend on its ability to bind copper (Cu). There is now considerable evidence that the prion protein is an antioxidant. Once the prion protein binds Cu, it may have an activity like that of a superoxide dismutase. Conversion of the prion protein to an abnormal isoform might lead to a loss of antioxidant protection that could be responsible for neurodegeneration in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Horwich, A. L. and Weissman, J. S. (1997) Deadly conformations—protein misfolding in prion disease. Cell 89, 499–510.

    Article  PubMed  CAS  Google Scholar 

  2. Liemann, S. and Glockshuber, R. (1998) Transmissible spongiform encephalopathies. Biochem. Biophys. Res. Commun. 250, 187–193.

    Article  PubMed  CAS  Google Scholar 

  3. Prusiner, S. B. (1997) Prion diseases and the BSE crisis. Science 278, 245–251.

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner, S. B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144.

    Article  PubMed  CAS  Google Scholar 

  5. Basler, K., Oesch, B., Scott, M., et al. (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428.

    Article  PubMed  CAS  Google Scholar 

  6. Sparkes, R. S., Simon, M., Cohn, V. H., et al. (1986) Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc. Natl. Acad. Sci. USA 83, 7358–7362.

    Article  PubMed  CAS  Google Scholar 

  7. Locht, C., Chesebro, B., Race, R., and Keith, J. M. (1986) Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl. Acad. Sci. USA 83, 6372–6376.

    Article  PubMed  CAS  Google Scholar 

  8. Sendo, F., Suzuki, K., Watanabe, T., Takeda, Y., and Araki, Y. (1998) Modulation of leukocyte transendothelial migration by integrin-associated glycosyl phosphatidyl inositol (GPI)-anchored proteins. Inflamm. Res. 47 (Suppl. 3), S133-S136.

    Article  PubMed  CAS  Google Scholar 

  9. Gabriel, J. M., Oesch, B., Kretzschmar, H., Scott, M., and Prusiner, S. B. (1992) Molecular cloning of a candidate chicken prion protein. Proc. Natl. Acad. Sci. USA 89, 9097–9101.

    Article  PubMed  CAS  Google Scholar 

  10. Simonic, T., Duga, S., Strumbo, B., Asselta, R., Ceciliani, F., and Ronchi, S. (2000) cDNA cloning of turtle prion protein [In Process Citation]. FEBS Lett. 469, 33–38.

    Article  PubMed  CAS  Google Scholar 

  11. Booth, D. R., Sunde, M., Bellotti, V., et al. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [see comments]. Nature 385, 787–793.

    Article  PubMed  CAS  Google Scholar 

  12. Moore, R. C., Lee, I. Y., Silverman, G. L., et al. (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292, 797–817.

    Article  PubMed  CAS  Google Scholar 

  13. Sakaguchi, S., Katamine, S., Nishida, N., et al. (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531.

    Article  PubMed  CAS  Google Scholar 

  14. Matthews, S., Barlow, P., Boyd, J., et al. (1994) Structural similarity between the p17 matrix protein of HIV-1 and interferon gamma. Nature 370, 666–668.

    Article  PubMed  CAS  Google Scholar 

  15. James, T. L., Liu, H., Ulyanov, N. B., et al. (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10,086–10,091.

    Article  CAS  Google Scholar 

  16. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wuthrich, K. (1996) NMR structure of the mouse prion protein domain PrP(121–321). Nature 382, 180–182.

    Article  PubMed  CAS  Google Scholar 

  17. Wildegger, G., Liemann, S., and Glockshuber, R. (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates. Nat. Struct. Biol. 6, 550–553.

    Article  PubMed  CAS  Google Scholar 

  18. Hornshaw, M. P., McDermott, J. R., and Candy, J. M. (1995) Cu-binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem. Biophys. Res. Commun. 207, 621–629.

    Article  PubMed  CAS  Google Scholar 

  19. Brown, D. R., Qin, K., Herms, J. W., et al. (1997) The cellular prion protein binds Cu in vivo. Nature 390, 684–687.

    Article  PubMed  CAS  Google Scholar 

  20. Brown, D. R., Wong, B. S., Hafiz, F., Clive, C., Haswell, S., and Jones, I. M. (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem. J. 344, 1–5.

    Article  PubMed  CAS  Google Scholar 

  21. Stöckel, J., Safar, J., Wallace, A. C., Cohen, F. E., and Prusiner, S. B. (1998) Prion protein selectively binds Cu(II) ions. Biochemistry 37, 7185–7193.

    Article  PubMed  Google Scholar 

  22. Viles, J. H., Cohen, F. E., Prusiner, S. B., Goodin, D. B., Wright, P. E., and Dyson, H. J. (1999) Cu-binding to the prion protein: Structural implications of four identical cooperative binding sites. Proc. Natl. Acad. Sci. USA 96, 2042–2047.

    Article  PubMed  CAS  Google Scholar 

  23. Miura, T., Hori-i, A., and Takeuchi, H. (1996) Metal-dependent alpha-helix formation promoted by the glycine-rich octapeptide region of prion protein. FEBS Lett. 396, 248–252.

    Article  PubMed  CAS  Google Scholar 

  24. Ruiz, F. H., Silva, E., and Inestrosa, N. C. (2000) The N-Terminal Tandem Repeat Region of Human Prion Protein Reduces Cu: Role of Tryptophan Residues. Biochem. Biophys. Res. Commun. 269, 491–495.

    Article  PubMed  CAS  Google Scholar 

  25. Shiraishi, N., Ohta, Y., and Nishikimi, M. (2000) The Octapeptide Repeat Region of Prion Protein Binds Cu(II) in the Redox-Inactive State. Biochem. Biophys. Res. Commun. 267, 398–402.

    Article  PubMed  CAS  Google Scholar 

  26. Wong, B. S., Wang, H., Brown, D. R., and Jones, I. M. (1999) Selective oxidation of methionine residues in prion proteins. Biochem. Biophys. Res. Commun. 259, 352–355.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou, B. and Gitschier, J. (1997) hCTR1: a human gene for Cu uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94, 7481–7486.

    Article  PubMed  CAS  Google Scholar 

  28. Hornshaw, M. P., McDermott, J. R., Candy, J. M., and Lakey, J. H. (1995) Cu-binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 214, 993–999.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, D. R. (1999) Prion protein expression aids cellular uptake and veratridine-induced release of Cu. J. Neurosci. Res. 58, 717–725.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson G. S., Murray I., Hosszu, L. L., et al. (2001) Location and properties of metal-binding sites on the human prion protein. Proc. Natl. Acad. Sci. USA 98, 8531–8535.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, D. R., Herms, J., and Kretzschmar, H. A. (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5, 2057–2060.

    PubMed  CAS  Google Scholar 

  32. Giese, A., Brown, D. R., Groschup, M. H., Feldmann, C., Haist, I., and Kretzschmar, H. A. (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol. 8, 449–457.

    PubMed  CAS  Google Scholar 

  33. Brandner, S., Isenmann, S., Raeber, A., et al. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.

    Article  PubMed  CAS  Google Scholar 

  34. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380, 345–347.

    Article  PubMed  CAS  Google Scholar 

  35. Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B., and Kretzschmar, H. A. (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112.

    Article  PubMed  CAS  Google Scholar 

  36. Büeler, H., Aguzzi, A., Sailer, A., et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347.

    Article  PubMed  Google Scholar 

  37. Kuwahara, C., Takeuchi, A. M., Nishimura, T., et al. (1999) Prions prevent neuronal cell line death. Nature 400, 225–226.

    Article  PubMed  CAS  Google Scholar 

  38. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1997) Expression of prion protein in PC12 is enhanced by exposure to oxidative stress. Int. J. Dev. Neurosci. 15, 961–972.

    Article  PubMed  CAS  Google Scholar 

  39. Brown, D. R. and Besinger, A. (1998) Prion protein expression and superoxide dismutase activity. Biochem. J. 334, 423–429.

    PubMed  CAS  Google Scholar 

  40. White, A. R., Collins, S. J., Maher, F., et al. (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am. J. Pathol. 155, 1723–1730.

    PubMed  CAS  Google Scholar 

  41. Perovic, S., Schroder, H. C., Pergande, G., Ushijima, H., and Muller, W. E. (1997) Effect of flupirtine on Bcl-2 and glutathione level in neuronal cells treated in vitro with the prion protein fragment (PrP106–126) Exp. Neurol. 147, 518–524.

    Article  PubMed  CAS  Google Scholar 

  42. Brown, D. R., Nicholas, R. St. J., and Canevari, L. (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J. Neurosci. Res. 67, 211–224.

    Article  PubMed  CAS  Google Scholar 

  43. Huber, R., Deboer. T., and Tobler I. (2002) Sleep deprivation in prion protein deficient mice sleep deprivation in prion protein deficient mice and control mice: genotype dependent regional rebound. Neuroreport 13, 1–4.

    Article  PubMed  Google Scholar 

  44. Collinge, J., Whittington, M. A., Sidle, K. C., et al. (1994) Prion protein is necessary for normal synaptic function. Nature 370, 295–297

    Article  PubMed  CAS  Google Scholar 

  45. Guentchev, M., Voigtländer, T., Haberler, C., Groschup, M. H., and Budka, H. (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7, 270–273.

    Article  PubMed  CAS  Google Scholar 

  46. Wong, B.-S., Brown, D. R., Pan, T., et al. (2001a) Oxidative impairment in scrapie-infected mice is associated with brain metal perturbations and altered antioxidation activities. J. Neurochem. 79, 689–698.

    Article  PubMed  CAS  Google Scholar 

  47. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1998b) Effects of Cu on survival of prion protein knockout neurons and glia. J. Neurochem. 70, 1686–1693.

    PubMed  CAS  Google Scholar 

  48. Steinebach, O. M. and Wolterbeek, H. T. (1994) Role of cytosolic Cu, metallothionein and glutathione in Cu toxicity in rat hepatoma tissue culture cells. Toxicology 92, 75–90.

    Article  PubMed  CAS  Google Scholar 

  49. Brown, D. R., Clive, C., and Haswell, S. J. (2001) Antioxidant activity related to Cu-binding of native prion protein. J. Neurochem. 76, 69–76.

    Article  PubMed  CAS  Google Scholar 

  50. Stahl, N., Borchelt, D. R., and Prusiner, S. B. (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29, 5405–5412.

    Article  PubMed  CAS  Google Scholar 

  51. Salès, N., Rodolfo, K., Hassig, R., Faucheux, B., Di Giamberardino, L., and Moya, K. L. (1998) Cellular prion protein localization in rodent and primate brain. Eur. J. Neurosci. 10, 2464–2471.

    Article  PubMed  Google Scholar 

  52. DiDonato, M. and Sarkar, B. (1997) Cu transport and its alterations in Menkes and Wilson diseases. Biochim. Biophys. Acta 1360, 3–16.

    PubMed  CAS  Google Scholar 

  53. Vulpe, C. D. and Packman, S. (1995) Cellular Cu transport. Annu. Rev. Nutr. 15, 293–322.

    Article  PubMed  CAS  Google Scholar 

  54. Horn, N., Tonnesen, T., and Tümer, Z. (1992) Menkes disease: an x-linked neurological disorder of the Cu metabolism. Brain Pathol. 2, 351–362.

    PubMed  CAS  Google Scholar 

  55. Hartmann, H. A. and Evenson, M. A. (1992) Deficiency of Cu can cause neuronal degeneration. Med. Hypotheses 38, 75–85.

    Article  PubMed  CAS  Google Scholar 

  56. Tanzi, R. E., Petrukhin, K., Chernov, I., et al. (1993) The Wilson disease gene is a Cu transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 5, 344–350.

    Article  PubMed  CAS  Google Scholar 

  57. Cuthbert, J. A. (1995) Wilson’s disease: a new gene and an animal model for an old disease. J. Investig. Med. 43, 323–336.

    PubMed  CAS  Google Scholar 

  58. Dijkstra, M., Vonk, R. J., and Kuipers, F. (1996) How does Cu get into bile? New insights into the mechanism(s) of hepatobiliary Cu transport. J. Hepatol. 24, 109–120.

    Article  PubMed  CAS  Google Scholar 

  59. Colburn, R. W. and Maas, J. W. (1965) Adenosine triphosphate-metal-norepinephrine ternary complexes and catecholamine binding. Nature 208, 37–41.

    Article  PubMed  CAS  Google Scholar 

  60. Rajan, K. S., Colburn, R. W., and Davis, J. M. (1976) Distribution of metal ions in the subcellular fractions of several rat brain areas. Life Sci. 18, 423–431.

    Article  PubMed  CAS  Google Scholar 

  61. Kardos, J., Kovacs, I., Hajos, F., Kalman, M., and Simonyi, M. (1989) Nerve endings from rat brain tissue release Cu upon depolarization. A possible role in regulating neuronal excitability. Neurosci. Lett. 103, 139–144.

    Article  PubMed  CAS  Google Scholar 

  62. Barnea, A. and Hartter, D. E., and Cho, G. (1989) High-affinity uptake of 67Cu into a veratridine-releasable pool in brain tissue. Am. J. Physiol. 257, C315–322.

    PubMed  CAS  Google Scholar 

  63. Gabrielsson, B., Robson, T., Norris, D., and Chung, S. H. (1986) Effects of divalent metal ions on the uptake of glutamate and GABA from synaptosomal fractions. Brain Res. 384, 218–223.

    Article  PubMed  CAS  Google Scholar 

  64. Ma, J. Y. and Narahashi, T. (1993) Differential modulation of GABA-α receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons. Brain Res., 607, 222–232.

    Article  PubMed  CAS  Google Scholar 

  65. Velez-Pardo, C., Jimenez del Rio, M., Ebinger, G., and Vauquelin, G. (1995) Manganese and Cu promote the binding of dopamine to “serotonin binding proteins” in bovine frontal cortex. Neurochem. Int. 26, 615–622.

    Article  PubMed  CAS  Google Scholar 

  66. Farrar, J. R. and Hoss, W. (1984) Effects of Cu on the binding of agonists and antagonists to muscarinic receptors in rat brain. Biochem. Pharmacol. 33, 2849–2856.

    Article  PubMed  CAS  Google Scholar 

  67. Farrar, J. R., Hoss, W., Herndon, R. M., and Kuzmiak, M. (1985) Characterization of muscarinic cholinergic receptors in the brains of Cu-deficient rats. J. Neurosci. 5, 1083–1089.

    PubMed  CAS  Google Scholar 

  68. Geiger, J. D., Seth, P. K., Klevay, L. M., and Parmar, S. S. (1984) Receptor-binding changes in Cu-deficient rats. Pharmacology 28, 196–202.

    Article  PubMed  CAS  Google Scholar 

  69. Vlachova, V., Zemkova, H., and Vyklicky, L., Jr. (1996) Cu modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur. J. Neurosci. 8, 2257–2264.

    Article  PubMed  CAS  Google Scholar 

  70. Fraústo de Silva, J. J. R. and Williams, R. J. P. (1991) In The Biological Chemistry of Elements, Oxford, Clarendon Press, UK.

    Google Scholar 

  71. Linder, M. C. (1991) Biochemistry of Cu, Plenum Press, New York.

    Google Scholar 

  72. Hartter, D. E. and Barnea, A. (1988) Brain tissue accumulates 67Cu by two ligand-dependent saturable processes. A high affinity, low capacity and a low affinity, high capacity process. J. Biol. Chem. 263, 799–805.

    PubMed  CAS  Google Scholar 

  73. Andrews, N. C. (2001) Mining Cu transport genes. Proc. Natl. Acad. Sci. USA 98, 6543–6545.

    Article  PubMed  CAS  Google Scholar 

  74. Hornemann, S., Korth, C., Oesch, B., Riek, R., Wider, G., Wuthrich, K., and Glockshuber, R. (1997) Recombinant full-length murine prion protein, mPrP(23–231): purification and spectroscopic characterization. FEBS Lett. 413, 277–281.

    Article  PubMed  CAS  Google Scholar 

  75. Fridovich, I. (1974) Superoxide dismutases. Ann. Rev. Biochem. 44, 147–159.

    Article  Google Scholar 

  76. Chowdhury, S. K., Eshraghi, J., Wolfe, H., Forde, D., Hlavac, A. G., and Johnston, D. (1995) Mass spectrometric identification of amino acid transformations during oxidation of peptides and proteins: modifications of methionine and tyrosine. Anal. Chem. 67, 390–398.

    Article  PubMed  CAS  Google Scholar 

  77. Fridovich, I. (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J. Biol. Chem. 272, 18,515–18,517.

    Article  CAS  Google Scholar 

  78. Marklund, S. L. (1982) Human Cu-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA 79, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  79. Ookawara, T., Imazeki, N., Matsubara, O., et al. (1998) Tissue distribution of immunoreactive mouse extracellular superoxide dismutase. Am. J. Physiol. 275, C840–847.

    PubMed  CAS  Google Scholar 

  80. Gohel, C., Grigoriev, V., Escaig-Haye, F., et al. (1999) Ultrastructural localization of cellular prion protein (PrPc) at the neuromuscular junction. J. Neurosci. Res. 55, 261–267

    Article  PubMed  CAS  Google Scholar 

  81. Rodolfo, K., Hassig, R., Moya, K. L., Frobert, Y., Grassi, J., and Di Giamberardino, L. (1999) A novel cellular prion protein isoform present in rapid anterograde axonal transport. Neuroreport 10, 3639–3644.

    Article  PubMed  CAS  Google Scholar 

  82. Brown, D. R. (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J. Neurochem. 73, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  83. Moser, M., Colello, R. J., Pott, U., and Oesch, B. (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14, 509–17.

    Article  PubMed  CAS  Google Scholar 

  84. Brown, D. R., Besinger, A., Herms, J. W., and Kretzschmar, H. A. (1998a) Microglial expression of the prion protein. Neuroreport 9, 1425–1429.

    PubMed  CAS  Google Scholar 

  85. Diomede, L., Sozzani, S., Luini, W., et al. (1996) Activation effects of a prion protein fragment [PrP-(106–126)] on human leucocytes. Biochem. J. 320, 563–570.

    PubMed  CAS  Google Scholar 

  86. Bendheim, P. E., Brown, H. R., Rudelli, R. D., Scala, L. J., et al. (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42, 149–156.

    PubMed  CAS  Google Scholar 

  87. Brown, H. R., Goller, N. L., Rudelli, R. D., et al. (1990) The mRNA encoding the scrapie agent protein is present in a variety of nonneuronal cells. Acta Neuropathol. 80, 1–6.

    Article  PubMed  CAS  Google Scholar 

  88. Brown, D. R., Schmidt, B., and Kretzschmar, H. A. (1998) A prion protein fragment primes type 1 astrocytes to proliferation signals from microglia. Neurobiol. Dis. 4, 410–422.

    Article  PubMed  CAS  Google Scholar 

  89. Thackray, A. M., Knight, R., Haswell, S. J., Bujdoso, R., and Brown, D. R. (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem. J. 362, 253–258.

    Article  PubMed  CAS  Google Scholar 

  90. Wong, B.-S., Chen, S. G., Colucci, M., et al. (2001) Aberrant metal binding by prion protein in human prion disease. J. Neurochem. 78, 1400–1408.

    Article  PubMed  CAS  Google Scholar 

  91. Raeber, A., Race, R. E., Brandner, S., et al. (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J. 16, 6057–6065.

    Article  PubMed  CAS  Google Scholar 

  92. Dupuis, L., Mbebi, C., Gonzalez de Aguilar, J. L., et al. (2002) Loss of prion protein in a transgenic model of amyotrophic lateral sclerosis. Mol. Cell Neurosci. 19, 216–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David R. Brown or Judyth Sassoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.R., Sassoon, J. Copper-dependent functions for the prion protein. Mol Biotechnol 22, 165–178 (2002). https://doi.org/10.1385/MB:22:2:165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:22:2:165

Index Entries

Navigation