Skip to main content
Log in

Magnetite-alginate beads for purification of some starch degrading enzymes

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Starch degrading enzymes, viz., β-amylase, glucoamylase, and pullulanase, were purified using magnetite-alginate beads. In each case, the enzyme activity was eluted by using 1.0 M maltose. β-Amylase (sweet potato), glucoamylase (Aspergillus niger), and pullulanase (Bacillus acidopullulyticus) from their crude preparations were purified 37-, 31-, and 49-fold with 86, 87, and 95% activity recovery, respectively.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed single band in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Worlock, A. J., Sidgwick, A., Horsburgh, T., and Bell, P. R. L. (1991) The use of paramagnetic beads for the detection of major histocompatibility complex class I & Class II antigens. Biotechniques 10, 310–315.

    PubMed  CAS  Google Scholar 

  2. Karlsson, G. B. and Platt, F. M. (1991) Analysis and isolation of human transferrin receptor using the OKT-9 monoclonal antibody covalently crosslinked to magnetic beads. Anal. Biochem. 199, 219–222.

    Article  PubMed  CAS  Google Scholar 

  3. Raghavarao, K. S., Dueser, M., and Todd, P. (2000) Multistage magnetic and electrophoretic extraction of cells, particles and macromolecules. Adv. Biochem. Eng. Biotechnol. 68, 139–190.

    PubMed  CAS  Google Scholar 

  4. Safarik, I. and Safarikova, M. (1999) The use of magnetic techniques for the isolation of cells. J. Chromatogr. B. 722, 33–53.

    Article  CAS  Google Scholar 

  5. Safarik, I. and Safarikova, M. (1997) Overview of magnetic separations used in biochemical and biotechnological applications, in Scientific and Clinical Applications of Magnetic Carriers (Hafeli, U., Schut, W., Teller, J., and Dorowski, M., eds.), Plenum Press, New York, pp. 323–340.

    Google Scholar 

  6. Tyagi, R. and Gupta, M.N. (1995) Purification and immobilization of Aspergillus niger on magnetic latex beads. Biocatal. Biotrans. 12, 293–298.

    CAS  Google Scholar 

  7. Teotia, S. and Gupta, M. N. (2001) Purification of α-amylases using magnetic alginate beads. Appl. Biochem. Biotechnol. 90, 211–220.

    Article  PubMed  CAS  Google Scholar 

  8. Teotia, S., Khare, S. K., and Gupta, M. N. (2001) An efficient purification process for sweet potato beta-amylase by affinity precipitation with alginate. Enzyme Microb. Technol. 28, 792–795.

    Article  CAS  Google Scholar 

  9. Sharma, S., Sharma, A., and Gupta, M. N. (2000) One step purification of peanut phospholipase D by precipitation with alginate. Bioseparation 9, 93–98.

    Article  PubMed  CAS  Google Scholar 

  10. Smidsrod, O. and Skjak-Braek, G. (1990) Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78.

    Article  PubMed  CAS  Google Scholar 

  11. Burns, M. A., Kvesitadze, G. I., and Graves, D. J. (1985) Dried calcium alginate/magnetite spheres: A new support for chromatographic separations and enzyme immobilization. Biotechnol. Bioeng. 27, 137–145.

    Article  CAS  Google Scholar 

  12. Bernfeld, P. (1955) Amylases α and β, in Methods in Enzymology, Vol. 1 (Colowick, S. P. and Kaplan, N., eds), Academic Press, New York, pp. 149–158.

    Google Scholar 

  13. Nelson, N. (1944) Photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375–380.

    CAS  Google Scholar 

  14. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  15. Hames, B. D. (1986) An Introduction to polyacrylamide gel electrophoresis, in Gel Electrophoresis of Protein; A Practical Approach, (Hames, B. D. and Rickwood, D. eds), IRL Press, Oxford, pp. 1–86.

    Google Scholar 

  16. Cudney, R. and McPherson (1993) A Preliminary crystallographic analysis of sweet potato β-amylase. J. Mol. Biol. 229, 253–254.

    Article  PubMed  CAS  Google Scholar 

  17. Manjunath, P. and Raghavendra Roa, M. R. (1979) Comparative studies on glucoamylases from three sources. J. Biosci. 1, 409–425.

    CAS  Google Scholar 

  18. Vihinen, M. and Mantsala, P. (1989) Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24, 329–418.

    PubMed  CAS  Google Scholar 

  19. Crab, W. D., Mitchinson, C. (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol. 15, 349–352.

    Article  Google Scholar 

  20. Janse, B. J., Pretorius, I. S. (1995) One-step hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, gluco-amylase and pullulanase. Appl. Microbiol. Biotechnol. 42(6), 878–883.

    Article  PubMed  CAS  Google Scholar 

  21. Patil, V. B., Patil, N. B. (2000) Biomass conversion: Synergistic use of α-amylase and amyloglucosidase for rapid and maximum conversion of starch into glucose. Ind. J. Chem. Technol. 7, 47–50.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teotia, S., Gupta, M.N. Magnetite-alginate beads for purification of some starch degrading enzymes. Mol Biotechnol 20, 231–237 (2002). https://doi.org/10.1385/MB:20:3:231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:20:3:231

Index Entries

Navigation