Skip to main content
Log in

MANF

A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We describe the discovery of a novel, 20 kDa, secreted human protein named mesencephalic astrocyte-derived neurotrophic factor, or MANF. The homologous, native molecule was initially derived from a rat mesencephalic type-1 astroycte cell line and recombinant MANF subcloned from a cDNA encoding human arginine-rich protein. MANF selectively protects nigral dopaminergic neurons, versus GABAergic or serotonergic neurons. The discovery of MANF marks a more systematic approach in the search for astrocyte-derived, secreted proteins that selectively protect specific neuronal phenotypes. Compared to glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), MANF was more selective in the protection of dopaminergic neurons at lower (0.05–0.25 ng/mL) and middle (0.5–2.5 ng/mL) concentrations: MANF>GDNF>BDNF. GDNF was more selective at higher concentrations (25–50 ng/ml): GDNF>MANF>BDNF. Two domains in MANF of 39-AA and 109-AA respectively, and eight cysteines are conserved from C. elegans to man. MANF is encoded by a 4.3 Kb gene with 4 exons, and is located on the short arm of human chromosome 3. The secondary structure is dominated by α-helices (47%) and random coils (37%). Studies to determine the localization of MANF in the brains of rat, monkey, and man, as well as the receptor, signaling pathways, and biologically active peptide mimetics are in progress. The selective, neuroprotective effect of MANF for dopaminergic neurons suggests that it may be indicated for the treatment of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200, 629–638.

    Article  PubMed  CAS  Google Scholar 

  • Airaksinen M. S. and Saarma M. (2002) The gdnf family: signalling, biological functions and therapeutic value. Nat. Rev Neurosci. 3, 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht P. J., Dahl J. P., Stoltzfus O. K., Levenson R., and Levison S. W. (2002) Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp. Neurol. 173, 46–62.

    Article  PubMed  CAS  Google Scholar 

  • Araque A., Carmignoto G., and Haydon P. G. (2001) Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813.

    Article  PubMed  CAS  Google Scholar 

  • Bassan M., Zamostiano R., Davidson A., Pinhasov A., Giladi E., Perl O., et al. (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J. Neurochem. 72, 1283–1293.

    Article  PubMed  CAS  Google Scholar 

  • Beattie E. C., Stellwagen D., Morishita W., Bresnahan J. C., Ha B. K., Von Zastrow M., et al. (2002) Control of Synaptic Strength by Glial TNFalpha. Science 295, 2282–2285.

    Article  PubMed  CAS  Google Scholar 

  • Brenneman D. E. and Gozes I. (1996) A femtomolar-acting neuroprotective peptide. J. Clin. Invest. 97, 2299–2307.

    Article  PubMed  CAS  Google Scholar 

  • Chao M. V. (1994) The p75 neurotrophin receptor. J. Neurobiol. 25, 1373–1385.

    Article  PubMed  CAS  Google Scholar 

  • Davies A. M. and Wright E. M. (1995) Neurotrophic factors: Neurotrophin autocrine loops. Curr. Biol. 5, 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Dreher Z., Tout S., and Stone J. (1994) Interactions of living astrocytes in vitro: Evidence of the development of contact spacing. Glia 11, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Durocher Y., Perret S., and Kamen A. (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acid Res. 30, No. 2e9.

  • Forger N. G. and Breedlove S. M. (1987) Motoneuronal death during human fetal development. J. Comp. Neurol. 264, 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Fraser D. D., Mudrick-Donnon L. A., and MacVicar B. A. (1994) Astrocytic GABA receptors. Glia 11, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Hansson E. and Rönnbäck L. (1990) Astrocytes in neurotransmission. Cell. Mol. Biol. 36, 487–496.

    PubMed  CAS  Google Scholar 

  • Hashino E., Shero M., Junghans D., Rohrer H., Milbrandt J., and Johnson E. M. J. (2001) GDNF and neurturin are target-derived factors essential for cranial parasympathetic neuron development. Development 128, 3773–3782.

    PubMed  CAS  Google Scholar 

  • Haydon P. G. (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Heumann R. (1994) Neurotrophin signaling. Curr. Opin. Neurobiol. 4, 668–679.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A., Kinrade E. F., and Georgiou M. (2001) The Drosophila neuregulin vein maintains glial survival during axon guidance in the CNS. Dev. Cell 1, 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Hyman C., Hofer M., Barde Y.-A., Juhasz M., Yancopoulos G. D., Squinto S. P., and Lindsay R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Jing S., Wen D., Yu Y., Holst P., Luo Y., Fang M., et al. (1996) GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  • Kim W. T., Rioult M. G., and Cornell-Bell A. H. (1994) Glutamate-induced calcium signaling in astrocytes. Glia 11, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Kinrade E. F., Brates T., Tear G., and Hidalgo A. (2001) Roundabout signalling, cell contact and trophic support confine longitudinal glia and axons in the Drosophila CNS. Development 128, 207–216.

    PubMed  CAS  Google Scholar 

  • Kohara K., Kitamura A., Morishima M. and Tsumoto T. (2001) Activity-Dependent Transfer of Brain-Derived Neurotrophic Factor to Postsynaptic Neurons. Science 291, 2419–2498.

    Article  PubMed  CAS  Google Scholar 

  • Korsching S. (1993) The neurotrophic factor concept: A reexamination. J. Neurosci. 13, 2739–2748.

    PubMed  CAS  Google Scholar 

  • Kruger G. and Morrison S. (2002) Brain repair by endogenous progenitors. Cell 110, 399–402.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R. (1987) The nerve growth factor 35 years later. Science 237, 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R. and Hamburger V. (1951) Selective growth-stimulating effects of mouse sarcoma on sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116, 321–361N.

    Article  PubMed  CAS  Google Scholar 

  • Li J., Kelly J. F., Chernushevich I., Harrison D. J., and Thibault P. (2000) Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectroscopy mass spectrometry. Anal. Chem. 72, 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Lin L.-F. H., Doherty D. H., Lile J. D., Bektesh S. and Collins F. (1993) GDNF: A glial cell-line derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.

    Article  PubMed  CAS  Google Scholar 

  • Lin L.-F. H., Zhang T. J., Collins F., and Armes L. G. (1994) Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J. Neurochem. 63, 758–768.

    Article  PubMed  CAS  Google Scholar 

  • Massagué J. (1996) Crossing the boundaries. Nature 382, 29–30.

    Article  PubMed  Google Scholar 

  • Nagler K., Mauch D. H., and Pfrieger F. W. (2001) Gliaderived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol. (Lond.) 533, 665–679.

    Article  CAS  Google Scholar 

  • Nakatomi H., Kuriu T., Okabe S., Yamamoto S., Hatano O., Kawahara N., et al. (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M. (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  • Nishi R. (1994) Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. J. Neurobiol. 25, 612–619.

    Article  PubMed  CAS  Google Scholar 

  • O’Malley E. K., Sieber B.-A., Morrison R. S., Black I. B., and Dreyfus C. F. (1994) Nigral Type I astrocytes release a soluble factor that increases dopaminergic neuron survival through mechanisms distinct from basic fibroblast growth factor. Brain Res. 647, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Panchision D. M., Martin-DeLeon P. A., Takeshima T., Johnston J. M., Shimoda K., Tsoulfas P., et al. (1998) An immortalized, type-1 astrocyte of mesencephalic origin source of a dopaminergic neurotrophic factor. J. Mol. Neurosci. 11, 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Peaire A. E., Takeshima T., Johnston J. M., Wada-Isoe K., Nakashima K., and Commissiong J. W. (2003) Production of dopaminergic neurons for cell therapy in the treatment of Parkinson’s disease. J. Neurosci. Meth. 124, 61–74.

    Article  CAS  Google Scholar 

  • Pinon L. G., Robinson M., and Davies A. M. (1995) High specificity of neurotrophins in the embryonic chicken trigeminal system. Eur. J. Neurosci. 7, 2397–2402.

    Article  PubMed  CAS  Google Scholar 

  • Purves D. (1986) The trophic theory of neural connections. Trends Neurosci. 9, 486–489.

    Article  Google Scholar 

  • Salm A. K. and McCarthy K. D. (1992) The evidence for astrocytes as a target for central noradrenergic activity: Expression of adrenergic receptors. Brain Res. Bull. 29, 265–275.

    Article  PubMed  CAS  Google Scholar 

  • Shimoda K., Sauve Y., Marini A., Schwartz J. P., and Commissiong J. W. (1992) A high percentage yield of tyrosine hydroxylase-positive cells from rat E14 mesencephalic cell culture. Brain Res. 586, 319–331.

    Article  PubMed  CAS  Google Scholar 

  • Shridhar V., Richard S., Shridhar R., et al. (1996) A gene from human chromosomal band 3p21.1 encodes a highly conserved arginine-rich-protein and is mutated in renal cell carcinomas. Oncogene 12, 1931–1939.

    PubMed  CAS  Google Scholar 

  • Song H., Stevens C. F., and Gage F. H. (2002) Astroglia induce neurogenesis from adult stem cells. Nature 417, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Takeshima T., Johnston J. M., and Commissiong J. W. (1994) Mesencephalic type 1 astrocytes rescue dopaminergic neurons from death induced by serum deprivation. J. Neurosci. 14, 4769–4779.

    PubMed  CAS  Google Scholar 

  • Takeshima T., Shimoda K., Johnston J. M., and Commissiong J. W. (1996) Standardized methods to bioassay neurotrophic factors for dopaminergic neurons. J. Neurosci. Meth. 67, 27–41.

    Article  CAS  Google Scholar 

  • Ullian E. M., Sapperstein S. K., Christopherson K. S., and Barres B. A. (2001) Control of synapse number by glia. Science 291, 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Van Wagoner N. J., Oh J. W., Repovic P., and Benveniste E. N. (1999) Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J. Neurosci. 19, 5236–5244.

    PubMed  Google Scholar 

  • Vogel K. S. and Davies A. M. (1991) The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 7, 819–830.

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H., Lieberam I., Porter J. A., and Jessell T. M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Commissiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, P.S., Raibekas, A., Pevsner, J. et al. MANF. J Mol Neurosci 20, 173–187 (2003). https://doi.org/10.1385/JMN:20:2:173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:20:2:173

Index Entries

Navigation