Skip to main content
Log in

Regulatory T cell-mediated transplantation tolerance

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The existence of naturally occurring regulatory T cells in normal hosts and their pivotal role in maintaining both auto- and allo-tolerance have direct implications on the therapy of autoimmune disorders and for achieving immunosuppression-free allotransplantation. Among the various forms of regulatory T cells described, CD4+CD25+ T cells have emerged as one of the most potent tolerogenic subsets. In this review, we discuss the molecular basis of development and function of these regulatory T cells and their potential role in the context of chronic lung allograft rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nishizuka Y, Sakakura T: Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969;166(906):753–755.

    PubMed  CAS  Google Scholar 

  2. Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y: Prevention of posthymectomy autoimmune thyroiditis in mice. Lab Invest 1976;34(6):601–605.

    PubMed  CAS  Google Scholar 

  3. Sakaguchi S, Takahashi T, Nishizuka Y: Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 1982;156(6):1565–1576.

    PubMed  CAS  Google Scholar 

  4. Sakaguchi S, Takahashi T, Nishizuka Y: Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med 1982;156(6):1577–1586.

    PubMed  CAS  Google Scholar 

  5. Smith H, Sakamoto Y, Kasai K, Tung KS: Effector and regulatory cells in autoimmune oophoritis elicited by neonatal thymectomy. J Immunol 1991;147(9):2928–2933.

    PubMed  CAS  Google Scholar 

  6. Gershon RK, Maurer PH, Merryman CF: A cellular basis for genetically controlled immunologic unresponsiveness in mice: tolerance induction in T-cells. Proc Natl Acad Sci USA 1973;70(1):250–254.

    PubMed  CAS  Google Scholar 

  7. Gershon RK, Cohen P, Hencin R, Liebhaber SA: Suppressor T cells. J Immunol 1972;108(3):586–590.

    PubMed  CAS  Google Scholar 

  8. Gershon RK, Kondo K: Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970;18(5):723–737.

    PubMed  CAS  Google Scholar 

  9. Gershon RK, Liebhaber S, Ryu S: T-cell regulation of T-cell responses to antigen. Immunology 1974;26(5):909–923.

    PubMed  CAS  Google Scholar 

  10. Gershon RK, Lance EM, Kondo K: Immuno-regulatory role of spleen localizing thymocytes. J Immunol 1974;112(2):546–554.

    PubMed  CAS  Google Scholar 

  11. Green DR, Webb DR: Saying the ‘S’ word in public. Immunol Today 1993;14(11):523–525.

    PubMed  CAS  Google Scholar 

  12. Hall BM, Pearce NW, Gurley KE, Dorsch SE: Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med 1990; 171(1):141–157.

    PubMed  CAS  Google Scholar 

  13. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–1164.

    PubMed  CAS  Google Scholar 

  14. Gilliet M, Liu YJ: Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002;195(6):695–704.

    PubMed  CAS  Google Scholar 

  15. Zhou J, Carr RI, Liwski RS, Stadnyk AW, Lee TD: Oral exposure to alloantigen generates intragraft CD8+ regulatory cells. J Immunol 2001;167(1):107–113.

    PubMed  CAS  Google Scholar 

  16. Ciubotariu R, Colovai AI, Pennesi G, et al.: Specific suppression of human CD4+ Th cell responses to pig MHC antigens by CD8+CD28- regulatory T cells. J Immunol 1998;161(10):5193–5202.

    PubMed  CAS  Google Scholar 

  17. Zhang ZX, Yang L, Young KJ, Du Temple B, Zhang L: Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 2000;6(7):782–789.

    PubMed  CAS  Google Scholar 

  18. Wang R, Wang-Zhu Y, Grey H: Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc Natl Acad Sci USA 2002;99(4):2181–2186.

    PubMed  CAS  Google Scholar 

  19. Zeng D, Lewis D, Dejbakhsh-Jones S, et al: Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 1999;189(7):1073–1081.

    PubMed  CAS  Google Scholar 

  20. Seino KI, Fukao K, Muramoto K, et al: Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA 2001; 98(5):2577–2581.

    PubMed  CAS  Google Scholar 

  21. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA: CD4+CD25 high regulatory cells in human peripheral blood. J Immunol 2001;167(3):1245–1253.

    PubMed  CAS  Google Scholar 

  22. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH: Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001;193(11):1285–1294.

    PubMed  CAS  Google Scholar 

  23. Levings MK, Sangregorio R, Roncarolo MG: Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193(11):1295–1302.

    PubMed  CAS  Google Scholar 

  24. Stephens LA, Mottet C, Mason D, Powrie F: Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 2001;31(4):1247–1254.

    PubMed  CAS  Google Scholar 

  25. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G: Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001;193(11):1303–1310.

    PubMed  CAS  Google Scholar 

  26. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I: Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991;352(6336):621–624.

    PubMed  CAS  Google Scholar 

  27. Almeida AR, Legrand N, Papiernik M, Freitas AA: Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 2002; 169(9):4850–4860.

    PubMed  Google Scholar 

  28. Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I: Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999; 190(11):1561–1572.

    PubMed  CAS  Google Scholar 

  29. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW: Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995;3(4):521–530.

    PubMed  CAS  Google Scholar 

  30. Malek TR, Yu A, Vincek V, Scibelli P, Kong L: CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002;17(2):167–178.

    PubMed  CAS  Google Scholar 

  31. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ: Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 2002;196(6):851–857.

    PubMed  CAS  Google Scholar 

  32. Sakaguchi S: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004;22:531–562.

    PubMed  CAS  Google Scholar 

  33. Gavin MA, Clarke SR, Negrou E, Gallegos A, Rudensky A. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat Immunol 2002;3(1):33–41.

    PubMed  CAS  Google Scholar 

  34. Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN: Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001; 31(4):1122–1131.

    PubMed  CAS  Google Scholar 

  35. Thornton AM, Shevach EM: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188(2):287–296.

    PubMed  CAS  Google Scholar 

  36. Fehr T, Takeuchi Y, Kurtz J, Wekerle T, Sykes M: Early regulation of CD8 T cell alloreactivity by CD4(+)CD25(−)T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8(+) T cells, precluding a role for sustained regulation. Eur J Immunol 2005;35(9):2679–2690.

    PubMed  CAS  Google Scholar 

  37. Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H: Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 2002;168(11): 5558–5565.

    PubMed  CAS  Google Scholar 

  38. Unger WW, Jansen W, Wolvers DA, van Halteren AG, Kraal G, Samsom JN: Nasal tolerance induces antigenspecific CD4+CD25-regulatory T cells that can transfer their regulatory capacity to naive CD4+T cells. Int Immunol 2003;15(6):731–739.

    PubMed  CAS  Google Scholar 

  39. Bluestone JA, Abbas AK: Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003;3(3):253–257.

    PubMed  CAS  Google Scholar 

  40. Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6(4): 345–352.

    PubMed  CAS  Google Scholar 

  41. Arch RH: Function of tumor necrosis factor receptor family members on regulatory T cells. Immunol Res 2005;32(1–3): 15–30.

    PubMed  CAS  Google Scholar 

  42. Taams LS, Vukmanovic-Stejic M, Smith J, et al.: Antigenspecific T cells. Eur J Immunol 2002;32(6):1621–1630.

    PubMed  CAS  Google Scholar 

  43. Takahashi T, Tagami T, Yamazaki S, et al.: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192(2): 303–310.

    PubMed  CAS  Google Scholar 

  44. Takahashi T, Kuniyasu Y, Toda M, et al.: Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998;10(12):1969–1980.

    PubMed  CAS  Google Scholar 

  45. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;3(2):135–142.

    PubMed  CAS  Google Scholar 

  46. Baecher-Allan C, Viglietta V, Hafler DA: Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol 2002;169(11):6210–6217.

    PubMed  CAS  Google Scholar 

  47. LaSalle JM, Tolentino PJ, Freeman GJ, Nadler LM, Hafler DA: Early signaling defects in human T cells anergized by T cell presentation of autoantigen. J Exp Med 1992;176(1):177–186.

    PubMed  CAS  Google Scholar 

  48. Fritzsching B, Oberle N, Eberhardt N, et al.: Cutting edge: in contrast to effector T cells, CD4+CD25+Fox P3+regulatory T cellsare highly susceptible to CD95 ligand-but not to TCR-mediated cell death. J Immunol 2005; 175(1):32–36.

    PubMed  CAS  Google Scholar 

  49. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J: Regulatory T cells selectively express toll-like receptors and are activated by lipopoly saccharide. J Exp Med 2003;197(4):403–411.

    PubMed  CAS  Google Scholar 

  50. Pasare C, Medzhitov R: Toff pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003;299(5609):1033–1036.

    PubMed  CAS  Google Scholar 

  51. Brunkow ME, Jeffery EW, Hjerrild KA, et al.: Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27(1):68–73.

    PubMed  CAS  Google Scholar 

  52. Chatila TA, Blaeser F, Ho N, et al.: JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000;106(12):R75–81.

    PubMed  CAS  Google Scholar 

  53. Godfrey VL, Wilkinson JE, Russell LB: X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991;138(6):1379–1387.

    PubMed  CAS  Google Scholar 

  54. Powell BR, Buist NR, Stenzel P: An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982;100(5):731–737.

    PubMed  CAS  Google Scholar 

  55. Gambineri E, Torgerson TR, Ochs HD: Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003;15(4):430–435.

    PubMed  CAS  Google Scholar 

  56. Bennett CL, Christie J, Ramsdell F, et al.: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27(1):20–21.

    PubMed  CAS  Google Scholar 

  57. Wildin RS, Ramsdell F, Peake J, et al.: X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001;27(1):18–20.

    PubMed  CAS  Google Scholar 

  58. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4(4):330–336.

    PubMed  CAS  Google Scholar 

  59. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057–1061.

    PubMed  CAS  Google Scholar 

  60. Khattri R, Cox T, Yasayko SA, Ramsdell F: An essential role for Scurfin in CD4+CD25+T regulatory cells. Nat Immunol 2003;4(4):337–342.

    PubMed  CAS  Google Scholar 

  61. Tommasini A, Ferrari S, Moratto D, et al.: X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. Clin Exp Immunol 2002;130(1):127–130.

    PubMed  CAS  Google Scholar 

  62. Albert MH, Liu Y, Anasetti C, Yu XZ: Antigen-dependent suppression of alloresponses by Foxp 3-induced regulatory T cells in transplantation. Eur J Immunol 2005;35:2598–2607.

    PubMed  CAS  Google Scholar 

  63. Chai JG, Xue SA, Coe D, et al.: Regulatory T cells, derived from naive CD4+CD25-T cells by in vitro Foxp3 gene transfer, can induce transplantation tolerance. Transplantation 2005;79(10):1310–1316.

    PubMed  CAS  Google Scholar 

  64. Chen W, Jin W, Hardegen N, et al.: Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198(12):1875–1886.

    PubMed  CAS  Google Scholar 

  65. Baratelli F, Lin Y, Zhu L, et al.: Prostaglandin E2 Induces FOXP3 Gene Expression and T Regulatory Cell Function in Human CD4+T Cells. J Immunol 2005;175(3):1483–1490.

    PubMed  CAS  Google Scholar 

  66. Hong J, Li N, Zhang X, Zhang B, Zhang JZ. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA 2005;102(18):6449–6454.

    PubMed  CAS  Google Scholar 

  67. Walker MR, Kasprowicz DJ, Gersuk VH, et al.: Induction of Fox P3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J Clin Invest 2003;112(9):1437–1443.

    PubMed  CAS  Google Scholar 

  68. Liang S, Alard P, Zhao Y, Pamell S, Clark SL, Kosiewicz MM: Conversion of CD4+CD25-cells into CD4+CD25+regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med 2005;201(1):127–137.

    PubMed  CAS  Google Scholar 

  69. Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C: Regulatory CD4 T cells: expression of IL-2R alpha chain. resistance to clonal deletion and IL-2 dependency. Int Immunol 1998;10(4):371–378.

    PubMed  CAS  Google Scholar 

  70. Yvon ES, Vigouroux S, Rousseau RF, et al.: Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood 2003;102(10):3815–3821.

    PubMed  CAS  Google Scholar 

  71. Derbinski J, Schulte A, Kyewski B, Klein L: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001;2(11):1032–1039.

    PubMed  CAS  Google Scholar 

  72. Jordan MS, Boesteanu A, Reed AJ, et al.: Thymicselection of CD4+CD25+regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2(4):301–306.

    PubMed  CAS  Google Scholar 

  73. Dieckmann D, Bruett CH, Ploettner H, Lutz MB, Schuler G: Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 2002;196(2):247–2253.

    PubMed  CAS  Google Scholar 

  74. Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, Enk AH: Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 2002; 196(2):255–260.

    PubMed  CAS  Google Scholar 

  75. Stassen M, Fondel S, Bopp T, et al.: Human CD25+regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+T helper cells. Eur J Immunol 2004;34(5):1303–1311.

    PubMed  CAS  Google Scholar 

  76. Groux H, O'Garra A, Bigler M, et al.: A CD4+T-cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature 1997;389(6652):737–742.

    PubMed  CAS  Google Scholar 

  77. Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Wall Malefyt R, Roncarolo MG: IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 2001;166(9):5530–5539.

    PubMed  CAS  Google Scholar 

  78. Wakkach A, Cottrez F, Groux H: Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J Immunol 2001;167(6):3107–3113.

    PubMed  CAS  Google Scholar 

  79. Barrat FJ, Cua DJ, Boonstra A, et al.: In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)-and Th2-inducing cytokines. J Exp Med 2002;195(5):603–616.

    PubMed  CAS  Google Scholar 

  80. Chen Y, Inobe J, Kuchroo VK, Baron JL, Janeway CA, Jr., Weiner HL: Oral tolerance in myelin basic protein T cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent in duction of regulatory cells. Proc Natl Acad Sci USA 1996; 93(1):388–391.

    PubMed  CAS  Google Scholar 

  81. Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL: IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomyelitis. Eur J Immunol 1998; 28(9):2780–2790.

    PubMed  CAS  Google Scholar 

  82. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA: Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-betal-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996;98(1):70–77.

    PubMed  CAS  Google Scholar 

  83. Teitelbaum D, Arnon R, Sela M: Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. Proc Natl Acad Sci USA 1999;96(7):3842–3847.

    PubMed  CAS  Google Scholar 

  84. Brent L, Kilshaw PJ: Prolongation of skin allograft survival with spleen extracts and antilymphocytic serum. Nature 1970;227(5261):898–900.

    PubMed  CAS  Google Scholar 

  85. Kilshaw PJ, Brent L, Thomas AV: Specific unresponsiveness to skin allografts in mice. II. The mechanism of unresponsiveness induced by tissue extracts and antilymphocytic serum. Transplantation 1974;17(1):57–69.

    PubMed  CAS  Google Scholar 

  86. Waldmann H, Cobbold S: Regulating the immune response to transplants. a role for CD4+ regulatory cells? Immunity 2001;14(4):399–406.

    PubMed  CAS  Google Scholar 

  87. Mizobuchi T, Yasufuku K, Zheng Y, et al.: Differential expression of Smad7 transcripts identifies the CD4+CD45RChigh regulatory T cells that mediate type V collagen-induced tolerance to lung allografts. J Immunol 2003;171(3):1140–1147.

    PubMed  CAS  Google Scholar 

  88. Mason D: A very high level of crossreactivity is an essential feature of the T cell receptor. Immunol Today 1998;19(9):395–404.

    PubMed  CAS  Google Scholar 

  89. Cortesini R, Suciu-Foca N: The concept of “partial” clinical tolerance. Transpl Immunol 2004;13(2):101–104.

    PubMed  CAS  Google Scholar 

  90. Wood KJ, Sakaguchi S: Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003;3(3):199–210.

    PubMed  CAS  Google Scholar 

  91. Zhai Y, Kupiec-Weglinski JW: What is the role of regulatory T cells in transplantation tolerance? Curr Opin Immunol 1999;11(5):497–503.

    PubMed  CAS  Google Scholar 

  92. Guillonneau C, Aubry V, Renaudin K, et al.: Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade. Transplantation 2005;80(2):255–263.

    PubMed  CAS  Google Scholar 

  93. Koksoy S, Elpek KG, Yolcu ES, Shirwan H: Tolerance to rat heart grafts induced by intrathymic immunomodulation is mediated by indirect recognition primed CD4+CD25+ Treg cells. Transplantation 2005;79(11): 1492–1497.

    PubMed  Google Scholar 

  94. van Maurik A, Herber M, Wood KJ, Jones ND: Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+T cell-mediated graft rejection: implications for anti-CD 154 immunotherapy. J Immunol 2002;169(10):5401–5404.

    PubMed  Google Scholar 

  95. Piccirillo CA, Shevach EM: Cuting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001;167(3):1137–1140.

    PubMed  CAS  Google Scholar 

  96. Lin CY, Graca L, Cobbold SP, Waldmann H: Dominant transplantation tolerance impairs CD8+ T cell func tion but not expansion. Nat Immunol 2002;3(12): 1208–1213.

    PubMed  CAS  Google Scholar 

  97. Sanchez-Fueyo A, Weber M, Domenig C, Strom TB, Zheng XX: Tracking the immunoregulatory mechanisms active during allograft tolerance. J Immunol 2002;168(5):2274–2281.

    PubMed  CAS  Google Scholar 

  98. Ng WF, Duggan PJ, Ponchel F, et al., Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 2001;98(9):2736–2744.

    PubMed  CAS  Google Scholar 

  99. Koenen HJ, Fasse E, Joosten I: IL-15 and cognate antigen successfully expand de novo-induced human antigen-specific regulatory CD4+T cells that require antigen-specific activation for suppression. J Immunol 2003;171(12):6431–6441.

    PubMed  CAS  Google Scholar 

  100. Taylor PA, Lees CJ, Blazar BR: The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002;99(10):3493–3499.

    PubMed  CAS  Google Scholar 

  101. Iellem A, Mariani M, Lang R, et al., Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 2001; 194(6):847–853.

    PubMed  CAS  Google Scholar 

  102. Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, Hancock WW: Recruitment of Foxp3+T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med 2005;201(7):1037–1044.

    PubMed  CAS  Google Scholar 

  103. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG: B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2001;2(12): 1126–1132.

    PubMed  CAS  Google Scholar 

  104. Holan V, Mitchison NA: Haplotype-specific suppressor T cells mediating linked suppression of immune responses elicited by third-party H-2 alloantigens. Eur J Immunol 1983;13(8):652–657.

    PubMed  CAS  Google Scholar 

  105. Madsen JC, Superina RA, Wood KJ, Morris PJ: Immunological unresponsiveness induced by recipient cells transfected with donor MHC genes. Nature 1988;332(6160):161–164.

    PubMed  CAS  Google Scholar 

  106. Wong W, Morris PJ, Wood KJ: Syngeneic bone marrow expressing a single donor class I MHC molecule permits acceptance of a fully allogeneic cardiac allograft. Transplantation 1996;62(10):1462–1468.

    PubMed  CAS  Google Scholar 

  107. Saitovitch D, Morris PJ, Wood KJ: Recipient cells expressing single donor MHC locus products can substitute for donor-specific transfusion in the induction of transplantation tolerance when pretreatment is combined with anti-Cd4 monoclonal antibody. Evidence for a vital role of Cd4+T cells in the induction of tolerance to class I molecules. Transplantation 1996;61(10): 1532–1538.

    PubMed  CAS  Google Scholar 

  108. Sonntag KC, Emery DW, Yasumoto A, et al. Tolerance to solid organ transplants through transfer of MHC class II genes. J Clin Invest 2001;107(1):65–71.

    PubMed  CAS  Google Scholar 

  109. Wong W, Morris PJ, Wood KJ: Pretransplant administration of a single donor class I major histocompatibility complex molecule is sufficient for the indefinite survival of fully allogeneic cardiac allografts: evidence for linked epitope suppression. Transplantation 1997;63(10):1490–1494.

    PubMed  CAS  Google Scholar 

  110. Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H: T cell suppression in transplantation tolerance through linked recognition. J Immunol 1996;156(10): 3602–3607.

    PubMed  CAS  Google Scholar 

  111. Banchereau J, Briere F, Caux C, et al.: Immunobiology of dendritic cells. Annu Rev Immunol 2000;18: 767–811.

    PubMed  CAS  Google Scholar 

  112. Heath WR, Carbone FR: Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001;19:47–64.

    PubMed  CAS  Google Scholar 

  113. Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol 2003;11(3–4):245–258.

    PubMed  CAS  Google Scholar 

  114. Vlad G, Cortesini R, Suciu-Foca N: License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J Immunol 2005; 174(10):5907–5914.

    PubMed  CAS  Google Scholar 

  115. Gallucci S, Matzinger P: Danger signals: SOS to the immune system. Curr Opin Immunol 2001;13(1): 114–119.

    PubMed  CAS  Google Scholar 

  116. Matzinger P. The danger model: a renewed sense of self. Science 2002;296(5566):301–305.

    PubMed  CAS  Google Scholar 

  117. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392(6673):245–252.

    PubMed  CAS  Google Scholar 

  118. Colonna M, Trinchieri G, Liu YJ: Plasmacytoid dendritic cells in immunity. Nat Immunol 2004;5(12): 1219–1226.

    PubMed  CAS  Google Scholar 

  119. Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002;99(1):351–358.

    PubMed  CAS  Google Scholar 

  120. Chieppa M, Bianchi G, Doni A, et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 2003;171(9):4552–4560.

    PubMed  CAS  Google Scholar 

  121. Penna G, Adorini L: I Alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 2000;164(5):2405–2411.

    PubMed  CAS  Google Scholar 

  122. Liu Z, Tugulea S, Cortesini R, Suciu-Foca N: Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28-T cells. Int Immunol 1998;10(6):775–783.

    PubMed  CAS  Google Scholar 

  123. Chang CC, Ciubotariu R, Manavahan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002;3(3):237–243.

    PubMed  CAS  Google Scholar 

  124. Min WP, Zhou D, Ichim TE, et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol 2003;170(3):1304–1312.

    PubMed  CAS  Google Scholar 

  125. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F: An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190(7):995–1004.

    PubMed  CAS  Google Scholar 

  126. Gershon RK: A disquisition on suppressor T cells. Transplant Rev 1975;26:170–185.

    PubMed  CAS  Google Scholar 

  127. Kappler JW, Roehm N, Marrack P: T cell tolerance by clonal elimination in the thymus. Cell 1987;49(2): 273–280.

    PubMed  CAS  Google Scholar 

  128. Qin S, Cobbold SP, Pope H, et al.: “Infectious” transplantation tolerance. Science 1993;259(5097):974–977.

    PubMed  CAS  Google Scholar 

  129. Mekala DJ, Alli RS, Geiger TL: IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4+CD25+T lymphocytes. Proc Natl Acad Sci USA 2005;102(33):11817–11822.

    PubMed  CAS  Google Scholar 

  130. Munn DH, Sharma MD, Mellor AL: Ligation of B7-1/B7-2 by human CD4+T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 2004;172(7):4100–4110.

    PubMed  CAS  Google Scholar 

  131. Fallarino F, Grohmann U, Hwang KW, et al.: Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003;4(12):1206–1212.

    PubMed  CAS  Google Scholar 

  132. Grohmann U, Orabona C, Fallarino F, et al: CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002;3(11):1097–1101.

    PubMed  CAS  Google Scholar 

  133. Cederbom L, Hall H, Ivars F: CD4+CD25+regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000;30(6):1538–1543.

    PubMed  CAS  Google Scholar 

  134. Halloran PF, Homik J, Goes N, et al: The “injury response”: a concept linking nonspecific injury, acute rejection, and long-term transplant outcomes. Transplant Proc 1997;29(1–2):79–81.

    PubMed  CAS  Google Scholar 

  135. Yoshizawa A, Ito A, Li Y, et al.: The roles of CD25+CD4+regulatory T cells in operational tolerance after living donor liver transplantation. Transplant Proc 2005;37(1):37–39.

    PubMed  CAS  Google Scholar 

  136. Meloni F, Vitulo P, Bianco AM, et al.: Regulatory CD4+CD25+T cells in the peripheral blood of lung transplant recipients: correlation with transplant outcome. Transplantation 2004;77(5):762–766.

    PubMed  Google Scholar 

  137. Salama AD, Najafian N, Clarkson MR, Harmon WE, Sayegh MH: Regulatory CD25+T cells in human kidney transplant recipients. J Am Soc Nephrol 2003;14(6):1643–1651.

    PubMed  Google Scholar 

  138. Burke CM, Theodore J, Dawkins KD, et al: Post-transplant obliterative bronchiolitis and other late lung sequelae in human heart-lung transplantation. Chest 1984;86(6):824–829.

    PubMed  CAS  Google Scholar 

  139. Reichenspurner H, Girgis RE, Robbins RC, et al: Stanford experience with obliterative bronchiolitis after lung and heart-lung transplantation. Ann Thorac surg 1996;62(5):1467–1472; discussion 1472–1463

    PubMed  CAS  Google Scholar 

  140. Yousem SA, Burke CM, Billingham ME: Pathologic pulmonary alterations in long-term human heart-lung transplantation. Hum Pathol 1985;16(9):911–923.

    PubMed  CAS  Google Scholar 

  141. Smith MA, Sundaresan S, Mohanakumar T, et al.: Effect of development of antibodies to HLA and cytomegalovirus mismatch on lung transplantation survival and development of bronchiolitis obliterans syndrome. J Thorac Cardiovasc Surg 1998;116(5):812–820.

    PubMed  CAS  Google Scholar 

  142. SivaSai KS, Smith MA, Poindexter NJ, et al.: Indirect recognition of donor HLA class I peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Transplantation 1999;67(8):1094–1098.

    PubMed  CAS  Google Scholar 

  143. Lu KC, Jaramillo A, Mendeloff EN, et al.: Concomitant allorecognition of mismatched donor HLA class I-and class II-derived peptides in pediatric lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant 2003;22(1):35–43.

    PubMed  Google Scholar 

  144. Reznik SI, Jaramillo A, SivaSai KS, et al: Indirect allorecognition of mismatched donor HLA class II peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Am J Transplant 2001;1(3): 228–235.

    PubMed  CAS  Google Scholar 

  145. Jaramillo A, Smith MA, Phelan D, et al.: Development of ELISA-detected anti-HLA antibodies precedes the development of bronchiolitis obliterans syndrome and correlates with progressive decline in pulmonary function after lung transplantation. Transplantation 1999;67(8):1155–1161.

    PubMed  CAS  Google Scholar 

  146. Haque MA, Mizobuchi T, Yasufuku K, et al.: Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol 2002;169(3):1542–1549.

    PubMed  CAS  Google Scholar 

  147. Smith CR, Mohanakumar T, Shimizu Y, et al: Brief cyclosporine treatment prevents in trathymic (IT) tolerance induction and precipitates acute rejection in an IT rat cardiac allograft model. Transplantation 2000; 69(2):294–299.

    PubMed  CAS  Google Scholar 

  148. Sakaguchi S, Sakaguchi N: Thymus and autoimmunity. Transplantation of the thymus from cyclosporin A-treated mice causes organ-specific autoimmune disease in athymic nude mice. J Exp Med 1988;167(4): 1479–1485.

    PubMed  CAS  Google Scholar 

  149. Shi YF, Sahai BM, Green DR: Cyclosporin A inhibits activation-induced cell death in T cell hybridomas and thymocytes. Nature 1989;339(6226):625–626.

    PubMed  CAS  Google Scholar 

  150. Demirkiran A, Kok A, Kwekkeboom J, Metselaar HJ, Tilanus HW, van der Laan LJ. Decrease of CD4+CD25+T cells in peripheral blood after liver transplantation: association with immunosuppression. Transplant Proc 2005;37(2):1194–1196.

    PubMed  CAS  Google Scholar 

  151. Ciancio G, Burke GW, Gaynor JJ, et al.: A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monotoring1. Transplantation 2005;80(4):457–465.

    PubMed  CAS  Google Scholar 

  152. Gregori S, Carsorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L: Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 2001;167(4):1945–1953.

    PubMed  CAS  Google Scholar 

  153. Battaglia M, Stabilini A, Roncarolo MG: Rapamycin selectively expands CD4+CD25+FoxP3+regulatory T cells. Blood 2005;105(12):4743–4748.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

AB and RCF contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharat, A., Fields, R.C. & Mohanakumar, T. Regulatory T cell-mediated transplantation tolerance. Immunol Res 33, 195–212 (2005). https://doi.org/10.1385/IR:33:3:195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:33:3:195

Key Words

Navigation