Skip to main content
Log in

Effects of gender difference on cardiac myocyte dysfunction in streptozotocin-induced diabetic rats

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The main characteristics of type 1 diabetic cardiomyopathy include depressed contractility and altered electrophysiological properties in ventricular myocytes. The goal of the present study was to determine the potential influence of gender in the diabetes-induced pathogenesis of ventricular myocyte function. Diabetes in both male and female rats was induced by a single intravenous injection of streptozotocin (STZ). Diabetic rats exhibited hyperglycemia and reduced body weight gain in both male and female groups. Neither contractile profiles nor activity of three types of K+ channels of ventricular myocytes was significantly different between nondiabetic male and female rats. Ventricular myocytes isolated from diabetic rats exhibited significant depresion in cell contraction and relaxation, which was associated with depression of intracellular Ca2+ ([Ca2+]i) transient. The degrees of contractile depression were comparable in ventricular myocytes obtained from both male and female diabetic rats. Similarly, diabetes depressed three types of outward K+ currents (Ito, Ik, and iss) to the same extent in both gender myocytes. These data demonstrate that in this animal model of diabetes, gender difference in cardiac myocyte functions was eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pierce, G. N. and Russell, J. C. (1997). Cardiovasc. Res. 34, 41–47.

    Article  PubMed  CAS  Google Scholar 

  2. Yu, J. Z., Rodrigues, B., and McNeill, J. H. (1997). Cardiovasc. Res. 34, 91–98.

    Article  PubMed  CAS  Google Scholar 

  3. Yu, Z., Quamme, G. A., and McNeill, J. H. (1994). Am. J. Physiol. 266, H2334-H2342.

    PubMed  CAS  Google Scholar 

  4. Fein, F. S., Kornstein, L. B., Strobeck, J. E., Capasso, J. M., and Sonnenblick, E. H. (1980). Cric. Res. 47, 922–933.

    CAS  Google Scholar 

  5. Fein, F. S. and Sonnenblick, E. H. (1985). Prog. Cardiovasc. Dis. 27, 255–270.

    Article  PubMed  CAS  Google Scholar 

  6. Malhotra, A., Mordes, J. P., McDermott, L., and Schaible, T. F. (1985). Am. J. Physiol. 249, H1051-H1055.

    PubMed  CAS  Google Scholar 

  7. Rodrigues, B. and McNeill, J. H. (1990). Canad. J. Physiol. Pharamcol. 68, 514–518.

    CAS  Google Scholar 

  8. Wold, L. E., Relling, D. P., Colligan, P. B., et al. (2001). J. Mol. Cell. Cardiol. 33, 1719–1726.

    Article  PubMed  CAS  Google Scholar 

  9. Choi, K. M., Zhong, Y., Hoit, B. D., et al. (2002). Am. J. Physiol. 283, H1398-H1408.

    CAS  Google Scholar 

  10. Stromberg, A. and Martensson, J. (2003). Eur. J. Cardiovasc. Nur. 2, 7–18.

    Article  Google Scholar 

  11. Casis, O., Gallego, M., Iriarte, M., and Sanchez-Chapula, J. A. (2000). Diabetologia 43, 101–109.

    Article  PubMed  CAS  Google Scholar 

  12. Qin, D., Huang, B., Deng, L., et al. (2001). Biochem. Biophys. Res. Commun. 283, 549–553.

    Article  PubMed  CAS  Google Scholar 

  13. Xu, Z., Patel, K. P., Lou, M. F., and Rozanski, G. J. (2002). Cardiovasc. Res. 53, 80–88.

    Article  PubMed  CAS  Google Scholar 

  14. Casis, O., and Echevarria, E. (2004). Curr. Vasc. Pharmacol. 2, 237–248.

    Article  PubMed  CAS  Google Scholar 

  15. Farhat, M. Y., Lavigne, M. C., and Ramwell, P. W. (1996). FASEB J. 10, 615–624.

    PubMed  CAS  Google Scholar 

  16. Bauters, C., Lamblin, N., McFadden, E., Van Belle, E., Millaire, A., and de Groote, P. (2003). Cardiovasc. Diabetol. 2, 1.

    Article  PubMed  Google Scholar 

  17. Suys, B. E., Katier, N., Rooman, R. P. A. et al. (2004). Diabetes Care 27, 1947–1953.

    Article  PubMed  Google Scholar 

  18. Zhong, J., Hwang, T. C., Adams, H. R., and Rubin, L. J. (1997). Am. J. Physiol. 273, H2312–2324.

    PubMed  CAS  Google Scholar 

  19. Sperelakis, N., Xiong, Z., Haddad, G., and Masuda, H. (1994). Mol. Cell. Biochem. 140, 103–117.

    Article  PubMed  CAS  Google Scholar 

  20. McGrogan, I., Lu, S., Hipworth, S., et al. (1995). Am. J. Physiol. 268, L407-L413.

    PubMed  CAS  Google Scholar 

  21. Schaible, T. F. and Scheuer, J. (1984). Basic Res. Cardiol. 79, 402–412.

    Article  PubMed  CAS  Google Scholar 

  22. Capasso, J. M., Remily, R. M., Smith, R. H., and Sonnenblick, E. H. (1983). Basic Res. Cardiol. 78, 156–171.

    Article  PubMed  CAS  Google Scholar 

  23. Brown, R. A., Walsh, M. F., and Ren, J. (2001). Endocr. Res. 27, 399–408.

    Article  PubMed  CAS  Google Scholar 

  24. Leblanc, N., Chartier, D., Gosselin, H., and Rouleau, J. L. (1998). J. Physiol. 511, 533–548.

    Article  PubMed  CAS  Google Scholar 

  25. Ho, K. K., Anderson, K. M., Kannel, W. B., Grossman, W., and Levy, D. (1993). Circulation 88, 107–115.

    PubMed  CAS  Google Scholar 

  26. Schocken, D. D., Arrieta, M. I., Leaverton, P. E., and Ross, E. A. (1992). J. Am. Coll. Cardiol. 20, 301–306.

    PubMed  CAS  Google Scholar 

  27. Curl, C. L., Wendt, I. R., and Kotsanas, G. (2001). Pflugers Arch. 441, 709–716.

    Article  PubMed  CAS  Google Scholar 

  28. Barrett-Connor, E. and Bush, T. L. (1991). JAMA. 265, 1861–1867.

    Article  PubMed  CAS  Google Scholar 

  29. Collins, P., Rosano, G. M., Jiang, C., Lindsay, D., Sarrel, P. M., and Poole-Wilson, P. A. (1993). Lancet 341, 1264–1265.

    Article  PubMed  CAS  Google Scholar 

  30. Grohe, C., Kahlert, S., Lobbert, K., et al. (1997). FEBS Lett. 416, 107–112.

    Article  PubMed  CAS  Google Scholar 

  31. Meyer, R., Linz, K. W., Surges, R., et al. (1998). Exp. Physiol. 83, 305–321.

    PubMed  CAS  Google Scholar 

  32. Sowers, J. R. (1998). Arch. Intern. Med. 158, 617–621.

    Article  PubMed  CAS  Google Scholar 

  33. Ren, J. and Ceylan-Isik, A. F. (2004). Endocrine 25, 73–84.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, X., Ye, G., Duan, J., Chen, A. F., and Ren, J. (2003). Endocr. Res. 29, 227–236.

    Article  PubMed  CAS  Google Scholar 

  35. Shimoni, Y. and Liu, X. F. (2003). J. Physiol. 550, 401–412.

    Article  PubMed  CAS  Google Scholar 

  36. Shimoni, Y. and Liu, X. F. (2004). Am. J. Physiol. 287, H311-H319.

    CAS  Google Scholar 

  37. Makino, A., Oda, S., and Kamata, K. (2001). Peptides 22, 639–645.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juming Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Zou, R., Judd, R.L. et al. Effects of gender difference on cardiac myocyte dysfunction in streptozotocin-induced diabetic rats. Endocr 29, 135–141 (2006). https://doi.org/10.1385/ENDO:29:1:135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:29:1:135

Key Words

Navigation