Skip to main content
Log in

The art of arteriogenesis

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The identification of collateral artery growth (arteriogenesis) as the only mechanism to compensate for the loss of an occluded artery forced us to define the mechanisms responsible for this type of vessel growth. To achieve this, a variety of coronary as well as peripheral models of arteriogenesis have been developed. Based on these studies it is obvious that arteriogenesis obeys different mechanisms than angiogenesis, the sprouting of capillaries. Upon occlusion of an artery, the blood flow is redirected into preexisting arteriolar anastomoses that experience increased mechanical forces such as shear stress and circum ferential wall stress. The endothelium of the arteriolar connections is then activated, resulting in an increased release of monocyte-attracting proteins as well as an upregulation of adhesion molecules. Upon adherence and extravasation, monocytes promote arteriogenesis by supplying growth factors and cytokines that bind to receptors that are expressed on vascular cells within a limited time frame. Animal studies evidenced that factors, such as monocyte chemoattractant protein-1, granulocyte-monocyte colony-stimulating factor, or transforming growth factor-β1, that either attract or prolong the lifetime of monocytes efficiently enhance collateral artery growth, an effect that was seen only to a minor degree after application of a single growth factor. Bone marrow-derived stems cells and endothelial progenitor cells do not incorporate in growing arteries but, rather, function as supporting cells. Complete elucidation of the mechanisms of arteriogenesis may lead to efficacious therapies counteracting the devastating consequences of vascular occlusive diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schaper, W., DeBrabander, M., and Lewi, P. (1971) DNA-synthesis and mitoses in coronary collateral vessels of the dog. Circ. Res. 28, 671–679.

    PubMed  CAS  Google Scholar 

  2. Wolf, C., Cai, J. W., Vosschulte, R., et al. (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J. Mol. Cell. Cardiol. 30, 2291–2305.

    Article  PubMed  CAS  Google Scholar 

  3. Scholz, D., Ziegelhoeffer, T., Helisch, A., et al. (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J. Mol. Cell. Cardiol. 34, 775–787.

    Article  PubMed  CAS  Google Scholar 

  4. Herzog, S., Sager, H., Khmelevski, E., Deylig, A., and Ito, W. D. (2002) Collateral arteries grow from preexisting anastomoses in the rat hindlimb. Am. J. Physiol. Heart Circ. Physiol. 283, H2012-H2020.

    PubMed  CAS  Google Scholar 

  5. Ito, W. D., Arras, M., Winkler, B., Scholz, D., Schaper, J., and Schaper, W. (1997) Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80, 829–837.

    PubMed  CAS  Google Scholar 

  6. Schaper, W., Pipp, F., Scholz, D., et al. (2004) Physical forces and their translation into molecular mechanisms, in Arteriogenesis, (Schaper, W. and Schaper, J. eds.) Kluwer Academic, Boston, pp. 73–114.

    Chapter  Google Scholar 

  7. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22.

    PubMed  CAS  Google Scholar 

  8. Fulton, W. F. M. (1965) The Coronary Arteries, Charles C. Thomas., Springfield, IL.

    Google Scholar 

  9. Schaper, W. and Schaper, J. (1993) Collateral Circulation—Heart, Brain, Kidney, Limbs. Kluwer Academic, Boston.

    Google Scholar 

  10. Paskins-Hurlburt, A. and Hollenberg, N. K. (1992) “Tissue need” and limb collateral arterial growth: skeletal contractile power and perfusion during collateral development in the rat. Circ. Res. 70, 546–553.

    PubMed  CAS  Google Scholar 

  11. Henry, T. D., Annex, B. H., McKendall, G. R., et al. (2003) The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation 107, 1359–1365.

    Article  PubMed  CAS  Google Scholar 

  12. Makinen, K., Manninen, H., Hedman, M., et al. (2002) Increased vascularity detected by digital substraction angiography after VEGF gene transfer to human lower limb artery: a randomized., placebo-controlled, double-blinded phase II study. Mol. Ther. 6, 127–133.

    Article  PubMed  CAS  Google Scholar 

  13. Rajagopalan, S., Mohler, E. R., 3rd., Lederman, R. J., et al. (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108, 1933–1938.

    Article  PubMed  CAS  Google Scholar 

  14. Kastrup, J. (2003) Therapeutic angiogenesis in ischemic heart disease: gene or recombinant vascular growth factor protein therapy? Curr. Gene Ther. 3, 197–206.

    Article  PubMed  CAS  Google Scholar 

  15. Lee, C. W., Stabile, E., Kinnaird, T., et al. (2004) Temporal patterns of gene expression after acute hindlimb ischemia in mice: insights into the genomic program for collateral vessel development. J. Am. Coll. Cardiol. 43, 474–482.

    Article  PubMed  CAS  Google Scholar 

  16. Ito, W. D., Arras, M., Scholz, D., Winkler, B., Htun, P., and Schaper, W. (1997) Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am. J. Physiol. 273, H1255-H1265.

    PubMed  CAS  Google Scholar 

  17. Deindl, E. and Schaper, W. (1999) Collateral and capillary formation—a comparison, in Therapeutic Angiogenesis, Ernst Schering Research Foundation—Workshop 28 (Dormandy, J. A., Dole, W. P., and Rubanyi, G. M., eds.), Springer, Berlin, pp. 67–86.

    Google Scholar 

  18. Deindl, E., Buschmann, I., Hoefer, I. E., et al. (2001) Role of ischemia and hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ. Res. 89, 779–786.

    Article  PubMed  CAS  Google Scholar 

  19. Deindl, E., Helisch, A., Scholz, D., Heil, M., Wagner, S., and Schaper, W. (2004) Role of hypoxia/ischemia/VEGF-A and strain differences, in Arteriogenesis, (Schaper, W. and Schaper, J., eds.) Kluwer Academic, Boston, pp. 115–130.

    Chapter  Google Scholar 

  20. Scholz, D., Ito, W., Fleming, I., Deindl, E., Sauer, A., Wiesnet, M., Busse, R., Schaper, J., and Schaper, W. (2000) Ultrastructure and molecular histology of rabbit hindlimb collateral artery growth (arteriogenesis). Virchows Arch. 436, 257–270.

    Article  PubMed  CAS  Google Scholar 

  21. Arras, M., Ito, W. D., Scholz, D., Winkler, B., Schaper, J., and Schaper, W. (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 41–50.

    Google Scholar 

  22. Ziegelhoeffer, T., Fernandez, B., Kostin, S., et al. (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238.

    Article  PubMed  CAS  Google Scholar 

  23. Busse, R. and Fleming, I. (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol. Sci. 24, 24–29.

    Article  PubMed  CAS  Google Scholar 

  24. Galbraith, C. G., Skalak, R., and Chien, S. (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell. Motil. Cytoskel. 40, 317–330.

    Article  CAS  Google Scholar 

  25. Moon, A. and Drubin, D. G. (1995) The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol. Biol. Cell. 6, 1423–1431.

    PubMed  CAS  Google Scholar 

  26. Theriot, J. A. (1997) Accelerating on a treadmill: ADF/cofilin promotes rapid actin turnover in the dynamic cytoskeleton. J. Cell Biol. 136, 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  27. Yonezawa, N., Nishida, E., and Sakai, H. (1985) pH control of actin polymerization by cofilin. J. Biol. Chem. 260, 14,410–14,412.

    CAS  Google Scholar 

  28. Toshima, J., Toshima, J. Y., Amano, T., Yang, N., Narumiya, S., and Mizundo, K. (2001) Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131–1145.

    PubMed  CAS  Google Scholar 

  29. Arber, S., Barbayannis, F. A., Hanser, H., et al. (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805–809.

    Article  PubMed  CAS  Google Scholar 

  30. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizundo, K., and Uemura, T. (2002) Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246.

    Article  PubMed  CAS  Google Scholar 

  31. Ono, S., Minami, N., Abe, H., and Obinata, T. (1994) Characterization of a novel cofilin isoform that is predominantely expressed in mammilian skeletal muscle. J. Biol. Chem. 269, 15,280–15,286.

    CAS  Google Scholar 

  32. Boengler, K., Pipp, F., Broich, K., Fernandez, B., Schaper, W., and Deindl, E. (2003) Identification of differentially expressed genes like cofilin2 in growing collateral arteries. Biochem. Biophys. Res. Commun. 17, 751–756.

    Article  Google Scholar 

  33. Vartiainen, M. K., Mustonen, T., Mattila, P. K., et al. (2002) The three mouse actin-depolymerizing factor/cofilins evolved to fullfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13, 725–732.

    Article  CAS  Google Scholar 

  34. Baird, A. and Klagsbrunn, M. (1991) The fibroblast growth factor family. Cancer Cells 3, 239–243.

    PubMed  CAS  Google Scholar 

  35. Fernig, D. G. and Gallagher, J. T. (1994) Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog. Growth Factor Res. 5, 353–377.

    Article  PubMed  CAS  Google Scholar 

  36. Givol, D. and Yayon, A. (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 6, 3362–3369.

    PubMed  CAS  Google Scholar 

  37. Partanen, J., Vainikka, S., Korhonen, J., Armstrong, E., and Alitalo, K. (1992) Diverse receptors for fibroblast growth factors. Prog. Growth Factors Res. 4, 69–83.

    Article  CAS  Google Scholar 

  38. Schumacher, B., Pecher, P., von Specht, B. U., and Stegmann, T. (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 97, 645–650.

    PubMed  CAS  Google Scholar 

  39. Unger, E. F., Banai, S., Shou, M., et al. (1994) Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 266, H1588-H1595.

    PubMed  CAS  Google Scholar 

  40. Yang, H. T., Deschenes, M. R., Ogilvie, R. W., and Terjung, R. L. (1996) Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ. Res. 79, 62–69.

    PubMed  CAS  Google Scholar 

  41. Rajanayagam, M. A., Shou, M., Thirumurti, V., et al. (2000) Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dog. J. Am. Coll. Cardiol. 35, 519–526.

    Article  PubMed  CAS  Google Scholar 

  42. Horvath, K. A., Doukas, J., Lu, CY., et al. (2002) Myocardial function recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann. Thorac. Surg. 74, 481–486.

    Article  PubMed  Google Scholar 

  43. Simons, M., Annex, B. H., Laham, R. J., et al. (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105, 788–793.

    Article  PubMed  CAS  Google Scholar 

  44. Lederman, R. J., Mendelsohn, F. O., Anderson, R. D., et al. (2002) Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 359, 2053–2058.

    Article  PubMed  CAS  Google Scholar 

  45. Burgess, W. H. and Maciag, T. (1989) The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58, 575–606.

    Article  PubMed  CAS  Google Scholar 

  46. Basilico, C. and Moscatelli, D. (1992) The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115–165.

    PubMed  CAS  Google Scholar 

  47. Johnson, D. E. and Williams, L. T. (1993) Structural and functional diversity in the FGF receptor multigene family growth factors and oncogenes. Adv. Cancer Res. 60, 1–60.

    PubMed  CAS  Google Scholar 

  48. Jin, Y., Pasumarthi, B. S., Bock, M. E., Lytras, A., Kardami, E., and Cattini, P. A. (1994) Cloning and expression of fibroblast growth factor receptor-1 isoforms in the mouse heart: evidence for isoform switching during heart development. J. Mol. Cell. Cardiol. 26, 1449–1459.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, J.-K., Gao, G., and Goldfarb, M. (1994) Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol. Cell. Biol. 14, 181–188.

    PubMed  CAS  Google Scholar 

  50. Abraham, J. A., Mergia, A., Whang, J. L., Tumola, A., Gospodarowicz, D., and Fiddes, J. C. (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233, 545–548.

    Article  PubMed  CAS  Google Scholar 

  51. Muthukrishan, L., Warder, E., and McNeil, P. L. (1991) Basic fibroblast growth factor is efficiently released from cytosolic storage sites through plasma membrane disruptions of endothelial cells. J. Cell. Physiol. 148, 1–16.

    Article  Google Scholar 

  52. McNeil, P. L., Muthukrishnan, W. E., and D'Amore, P. A. (1989) Growth factors are released by mechanically wounded endothelial cells. J. Cell Biol. 109, 811–821.

    Article  PubMed  CAS  Google Scholar 

  53. Mignatti, P., Morimoto, T., and Rifkin, D. B. (1992) Basic fibroblast growth factor, a protein devoid of of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J. Cell. Physiol. 151, 81–93.

    Article  PubMed  CAS  Google Scholar 

  54. Gloe, T., Sohn, H. Y., Meininger, G. A., and Pohl, U. (2002) Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via Integrin αvβ3. J. Biol. Chem. 277, 23,453–23,458.

    Article  CAS  Google Scholar 

  55. Prudovsky, I., Bagala, C., Tarantini, F., Mandinova, A., Bellum, S., and Maciag, T. (2002) The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export. J. Cell Biol. 158, 201–208.

    Article  PubMed  CAS  Google Scholar 

  56. Schlessinger, J. and Ullrich, A. (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9, 383–391.

    Article  PubMed  CAS  Google Scholar 

  57. Schlessinger, J., Lax, I., and Lemmon, M. (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83, 357–360.

    Article  PubMed  CAS  Google Scholar 

  58. Friesel, R., and Maciag, T. (1999) Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb. Haemost. 82, 748–754.

    PubMed  CAS  Google Scholar 

  59. Liekens, S., Neyts, J., Degréve, B., and De Clercq, E., (1997) The sulfonic acid polymers PAMPS [Poly(2-Acrylamido-2-Methyl-1-Propanesulfonoc Acid] and related analogons are highly potent inhibitors of angiogenesis. Oncol. Res. 9, 173–181.

    PubMed  CAS  Google Scholar 

  60. Deindl, E., Hoefer, I. E., Fernandez, B., Barancik, M., Heil, M., Strniskova, M., and Schaper, W. (2003) Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ. Res. 92, 561–568.

    Article  PubMed  CAS  Google Scholar 

  61. Deindl, E., Fernandez, B., Ziegelhoeffer, T., and Schaper, W. (2001) Collateral artery growth is associated with an increased expression of Egr-1. FASEB J. 15, A1079

    Google Scholar 

  62. Vogel, S., Kubin, T., Barancik, M., Deindl, E., von der Ahe, D., and Zimmermann, R. (2004) Signal transduction pathways in smooth muscle cells involved in arteriogenesis, in Arteriogenesis, (Schaper, W. and Schaper, J., eds.) Kluwer Academic, Boston, pp. 213–232.

    Chapter  Google Scholar 

  63. Schwachtgen, J. L., Houston, P., Campbell, C., Sukhatme, V., and Braddock, M. (1998) Fluid shear stress activation of erg-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signalrelated kinase 1/2 mitogen-activated protein kinase pathway. J. Clin. Invest. 101, 2540–2549.

    PubMed  CAS  Google Scholar 

  64. Collen, D. and Lijnen, H. R. (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78, 3114–3124.

    PubMed  CAS  Google Scholar 

  65. Vassalli, J. D. (1994) The urokinase receptor. Fibrinolysis, 8, 172–181.

    Article  CAS  Google Scholar 

  66. Carmeliet, P. and Collen, D. (1996) Gene manipulation and transfer of the plasminogen system and coagulation system in mice. Semin. Thromb. Hemost. 22, 525–542.

    Article  PubMed  CAS  Google Scholar 

  67. Blasi, F., Conese, M., Moller, L. B., et al. (1994) The urokinase receptor: structure, regulation and inhibitor-mediated internalization. Fibrinolysis 8, 182–188.

    Article  CAS  Google Scholar 

  68. Behrendt, N., Ronne, E., and Dano, K. (1995) The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol. Chem. Hoppe Seyler 376, 269–279.

    PubMed  CAS  Google Scholar 

  69. Gyetko, M. R., Todd, R. F. I., Wilkinson, C. C., and Sitrin, R. G. (1994) The urokinase receptor is required for human monocyte chemotaxis in vitro. J. Clin. Invest. 93, 1380–1387.

    PubMed  CAS  Google Scholar 

  70. Sitrin, R. G., Todd, R. F., Albrecht, E., and Gyetko, M. R. (1996) The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J. Clin. Invest. 97, 1942–1951.

    Article  PubMed  CAS  Google Scholar 

  71. Waltz D. A., Sailor, L. Z., and Chapman, H. A. (1993) Cytokines induce urokinase-dependent adhesion of human myeloid cells: a regulatory role for plasminogen activator inhibitors. J. Clin. Invest. 91, 1541–1552.

    PubMed  CAS  Google Scholar 

  72. Rao, N. K., Shi, G. P., and Chapman, H. A. (1995) Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression. J. Clin. Invest. 96, 464–474.

    Google Scholar 

  73. Sitrin, R. G., Shollenberger, S. B., Strieter, R. M., and Gyetko, M. R. (1996) Endogenously produced urokinase amplifies tumor necrosis factor-secretion by THP-1 mononuclear phagocytes. J. Leukoc. Biol. 59, 302–311.

    PubMed  CAS  Google Scholar 

  74. Cao, D., Mizukami, I. F., Garni-Wagner, B. A., et al. (1995) Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. J. Immunol., 154, 1817–1829.

    PubMed  CAS  Google Scholar 

  75. Cai, W. J., Koltai, S., Kocsis, E., et al. (2003) Remodeling of the adventitia during coronary arteriogenesis. Am. J. Physiol. Heart Circ. Physiol. 284, H31-H40.

    PubMed  CAS  Google Scholar 

  76. Deindl, E., Ziegelhoffer, T., Kanse, S. M., et al. (2003) Receptor-independent role of the urokinase-type plasminogen activator during arteriogenesis. FASEB J. 17, 1174–1176.

    PubMed  CAS  Google Scholar 

  77. Carmeliet, P., Moons, L., Herbert, J.-M., et al. (1997) Urokinase-type but not tissue-type plasminogen activator mediates arterial neointima formation in mice. Circ. Res. 81, 829–839.

    PubMed  CAS  Google Scholar 

  78. Syrovets, T., Rohwedder, A., Werchau, H., and Simmet, T. (1997) Plasmin triggers proinflammtory stimulation of human peripheral monocytes including cytokine expression. Naunyn Schmiedebergs Arch. Pharmacol. 312.

  79. van Roven, N., Hoefer, I., Buschmann, I., et al. (2002) Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation. FASEB J. 16, 432–434.

    Google Scholar 

  80. Buschmann, I. R., Hoefer, I. E., van Royen, N., Katzer, E., Braun-Dulleaus, R., Heil, M., Kostin, S., Bode, C., and Schaper, W. (2001) GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159, 343–356.

    Article  PubMed  CAS  Google Scholar 

  81. Seiler, C., Pohl, T., Wustmann, K., Hutter, D., Nicolet, P. A., Windecker, S., Eberli, F. R., and Meier, B. (2001) Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation 23, 2012–2017.

    Article  Google Scholar 

  82. Heil, M., Ziegelhoeffer, T., Wagner, S., Fernandez, B., Helisch, A., Martin, S., Tribulova, S., Kuziel, W. A., Bachmann, G., and Schaper, W. (2004) Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ. Res. 94, 671–677.

    Article  PubMed  CAS  Google Scholar 

  83. Hoefer, I. E., van Royen, N., Rectenwald, J. E., et al. (2004) Arteriogenesis proceeds via ICAM-1/Mac-1-mediated mechanisms. Circ. Res. 94, 1179–1185.

    Article  PubMed  CAS  Google Scholar 

  84. van Roven, N., Voskuil, M., Hoefer, I., et al. (2004) CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. Circulation 109, 1647–1652.

    Article  CAS  Google Scholar 

  85. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J. M. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967.

    Article  PubMed  CAS  Google Scholar 

  86. Shi, Q., Rafii, S., Wu, M. H., et al. (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367.

    PubMed  CAS  Google Scholar 

  87. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10,344–10,349

    Article  CAS  Google Scholar 

  88. Kalka, C., Masuda, H., Takahashi, T., et al. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427.

    Article  PubMed  CAS  Google Scholar 

  89. Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., and Anversa, P. (2001) Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann. NY Acad. Sci. 938, 221–229.

    Article  PubMed  CAS  Google Scholar 

  90. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436.

    Article  PubMed  CAS  Google Scholar 

  91. Shintani, S., Murohara T., Ikeda H., et al. (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103, 897–903.

    Article  PubMed  CAS  Google Scholar 

  92. Kawamoto, A., Gwon, H. C., Iwaguro, H., et al. (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103, 634–637.

    PubMed  CAS  Google Scholar 

  93. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., and Robbins, R. C. (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673.

    Article  PubMed  CAS  Google Scholar 

  94. Voswinckel, R., Ziegelhoeffer, T., Heil, M., et al. (2003) Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circ. Res. 93, 372–379.

    Article  PubMed  CAS  Google Scholar 

  95. Beck, H., Voswinckel, R., Wagner, S., et al. (2003) Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J. Cereb. Blood Flow Metab. 23, 709–717.

    Article  PubMed  Google Scholar 

  96. Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H., and Shine, H. D. (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297, 1299.

    Article  PubMed  CAS  Google Scholar 

  97. Wagers, A. J., Sherwood, R. I., Christensen, J. L., and Weissman, I. L. (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259.

    Article  PubMed  CAS  Google Scholar 

  98. Rehman, J., Li, J., Orschell, C. M., and March, K. L. (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169.

    Article  PubMed  Google Scholar 

  99. Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549.

    Article  PubMed  CAS  Google Scholar 

  100. Boengler, K., Pipp, F., Fernandez, B., Ziegelhoeffer, T., Schaper, W., and Deindl, E. (2003) Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (carp). Cardiovasc. Res. 59, 573–581.

    Article  PubMed  CAS  Google Scholar 

  101. Zimmermann, R., Boengler, K., Kampmann, A., et al. (2004) Expression profiling of growing arteries/hunting for new genes involved in arteriogenesis, in Arteriogenesis, (Schaper, W. and Schaper, J., eds.) Kluwer Academic, Boston, pp. 233–252.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Deindl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deindl, E., Schaper, W. The art of arteriogenesis. Cell Biochem Biophys 43, 1–15 (2005). https://doi.org/10.1385/CBB:43:1:001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:43:1:001

Index Entries

Navigation