Skip to main content
Log in

Steam pretreatment of douglas-fir wood chips

Can conditions for optimum hemicellulose recovery still provide adequate access for efficient enzymatic hydrolysis?

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Douglas-fir sapwood and heartwood were impregnated with SO2 and steam exploded at three severity levels, and the cellulose-rich, water-insoluble component was enzymatically hydrolyzed. The high-severity conditions resulted in near complete solubilization and some degradation of hemicelluloses and a significant improvement in the efficiency of enzymatic digestibility of the cell ulose component. At lower severity, some of the hemicellulose remained un hydrolyzed, and the cellulose present in the pretreated solids was not readily hydrolyzed. The medium-severity pretreatment conditions proved to be a good compromise because they improved the enzymatic hydrolyzability of the solids and resulted in the recovery of the majority of hemicellulose in a monomeric form within the water-soluble stream. Sapwood-derived wood chips exhibited a higher susceptibility to both pretreatment and hydrolysis and, on steam explosion, formed smaller particles as compared to heartwood-derived wood chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vallander, L. and Eriksson, K. (1985), Biotechnol. Bioeng. 27, 650–659.

    Article  CAS  Google Scholar 

  2. Esteghlalian, A., Hashimoto, A. G., Fenske, J., and Penner, M. (1997), Bioresour. Technol. 59, 129–136.

    Article  CAS  Google Scholar 

  3. Penner, M., Hashimoto, A. G., Esteghlalian, A., and Fenske, J. (1995) Am. Chem. Soc. Symp. Ser. (647), Fuller, G., McKesn, T. A., and Bills, D. D., eds., ACS, Washington, DC, pp. 12–31.

    Google Scholar 

  4. Saddler, J. N., Mes-Hartree, M., Yu, E. K. C., and Brownell, H. H. (1983), Biotechnol. Bioeng Symp. 13, 225–238.

    CAS  Google Scholar 

  5. Sawada, T., Nakamura, Y., Kobayashi, F., Kuwahara, M., and Watanabe, T. (1995), Biotechnol. Bioeng. 48, 719–724.

    Article  CAS  Google Scholar 

  6. Szczodrak, J. (1988), Biotechnol. Bioeng. 32, 771–776.

    Article  CAS  Google Scholar 

  7. Hahn-Hagerdal, B., Linden, T., Senac, T., and Skoog, K. (1991), Appl. Biochem. Biotechnol. 28/29, 131–144.

    Google Scholar 

  8. Nishikawa, N., Sutcliffe, R., and Saddler, J. N. (1988), Biotechnol. Bioeng. 31, 624–627.

    Article  CAS  Google Scholar 

  9. Philippidis, G., Smith, T., and Wyman, C. (1993), Biotechnol. Bioeng. 41, 846–853.

    Article  CAS  Google Scholar 

  10. Spindler, D., Wyman, C., and Grohman, K. (1991), Appl. Biochem. Biotechnol. 28/29, 773–786.

    Article  Google Scholar 

  11. Gregg, D. J., Boussaid, A., and Saddler, J. N. (1998), Bioresour. Technol. 63, 7–12.

    Article  CAS  Google Scholar 

  12. Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985), J. Wood Chem. Technol. 5(3), 405–425.

    Article  CAS  Google Scholar 

  13. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larrson, S., Palmqvist, E., and Hahn-Hagerdal, B. (1998), Appl. Biochem. Biotech. 70/72, 3–15.

    Google Scholar 

  14. Ramos, L. P. and Saddler, J. N. (1994), Am. Chem. Soc. Symp. Ser. (566), Himmel, M., Baker, J. and Overend, R., eds. ACS, Washington, DC, pp. 325–341.

    Google Scholar 

  15. Sjostrom, E. (1993), Wood Chemistry, Academic, San Diego.

    Google Scholar 

  16. Boussaid, A., Jarvis, J., Gregg, D. J., and Saddler, J. N. (1997), in The Third Biomass Conference of the Americas, Overend, R. P. and Chornet, E., eds., Montreal, Canada, pp. 873–880.

  17. Stone, J. E., Scallan, A. M., Donefer, E., and Ahlgren, E. (1969), Adv. Chem. Ser. (95), Washington, DC, pp. 219–244.

    Article  CAS  Google Scholar 

  18. Allan, G. G., Ko, Y. C., and Ritzenthaler, P. (1991), Tappi 3, 205–212.

    Google Scholar 

  19. Peters, L. E., Walker, L. P., Wilson, D. B., and Irwin, D. C. (1991), Bioresour. Technol. 35, 313–319.

    Article  CAS  Google Scholar 

  20. Mooney, C., Mansfield, S., Beatson, R., and Saddler, J. N. (1999), submitted.

  21. Mooney, C., Mansfield, S., Touhy, M., and Saddler, J. N. (1998), Bioresource. Technol. 64, 113–119.

    Article  CAS  Google Scholar 

  22. Mansfield, S., Mooney, S., and Saddler, J. N. (1999), Biotech. Prog. 15, 804–816.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Saddler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boussaid, AL., Esteghlalian, A.R., Gregg, D.J. et al. Steam pretreatment of douglas-fir wood chips. Appl Biochem Biotechnol 84, 693–705 (2000). https://doi.org/10.1385/ABAB:84-86:1-9:693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:84-86:1-9:693

Index Entries

Navigation