Skip to main content
Log in

Differential thermal and thermogravimetric analyses of bound water content in cellulosic substrates and its significance during cellulose hydrolysis by alkaline active fungal cellulases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Various cellulosic substrates were examined for bound water content by differential thermal analysis (DTA) and thermogravimetry (TG). Samples were heated in the range of 30–100°C at a rate of 3°/min. DTA vaporization curves for different cellulose samples indicated that the bound water (W b ) was vaporized at higher temperature than free water (W f ) at the surface. Weight loss was observed in two stages, corresponding to W f and W b in TG curves. The bound water content was dependent on the degree of crystallinity of cellulose. Among different cellulosic substrates, Walseth cellulose showed the highest bound water content, and it also was found to be the least crystalline. The alkaline-active, alkali-stable cellulase was obtained from the alkalotolerant Fusarium sp. The substrate specificity and viscometric characteristics confirmed the enzyme to be an endoglucanase. The W b content of Walseth cellulose was lowered during the enzymatic hydrolysis. The possible application of bound water analysis in understanding the hydrolysis of cellulosic substrates of different crystallinity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gusakov, A. V., Sinitsyn, A. P., Berlin, A. G., Markov, A. V., and Ankudimova, N. V. (2000), Enzyme Microb. Technol. 27, 664–671.

    Article  PubMed  CAS  Google Scholar 

  2. Cavaco-Paulo, A., Cortez, J., and Almeida, L. (1998), J. Soc. Dyers Colour 113, 218–222.

    Article  Google Scholar 

  3. Obendorf, S. K., Nielsen, V. S., and Fanφ, T. S. (2002), CHIMICA OGGI/Chem. Today 9, 40–44.

    Google Scholar 

  4. Hoshino, E. and Susumo, I. (1997), Enzymes in Detergency, vol. 9, Van Ee, J. H., Misset, O., Baas, E. J., eds., Marcel Dekker, New York, pp. 149–174.

    Google Scholar 

  5. Vyas, S., Lachke, A., and Absar, A. (2003), in Frontiers of Fungal Diversity in India, Rao, G. P., Manoharachari, C., Bhat, D. J., Rajak, R. C., and Lakhanpal, T. N., eds., International Book Distributing, Lucknow, India, pp. 143–159.

    Google Scholar 

  6. Goyal, A., Ghosh, B., and Eveleigh, D. (1991), Bioresour. Technol. 3, 37–50.

    Article  Google Scholar 

  7. Vyas, S. and Lachke, A. (2003), Enzyme Microb. Technol. 32, 236–245.

    Article  CAS  Google Scholar 

  8. Mansfield, S. D., Mooney, C., and Saddler, J. N. (1999), Biotechnol. Prog. 15, 804–816.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, W. G. and Yao, K. D. (2001), Polymer 42, 3943–3947.

    Article  CAS  Google Scholar 

  10. Hatakeyama, H. and Hatakeyama, T. (1998), Thermochim. Acta 308, 3–22.

    Article  CAS  Google Scholar 

  11. Maloney, T. C., Paulapuro, H., and Stenius, P. (1998), Nord. Pulp Pap. Res. J. 13, 31–36.

    CAS  Google Scholar 

  12. Pierlot, A. P. (1999), Textile Res. J. 69, 97–103.

    CAS  Google Scholar 

  13. Bhaskar, G., Ford, J. L., and Hollingsbee, D. A. (1998), Thermochim. Acta 322, 153–165.

    Article  CAS  Google Scholar 

  14. Capitani, D., Emanuele, M. C., Bella, J., Segre, A. L., Attanasio, D., Focher, D., and Capretti, G. (1999), TAPPI J. 82, 117–124.

    CAS  Google Scholar 

  15. Hatakeyama, T. and Hatakeyama, H. (1992), in Viscoelasticity of Biomaterials, vol. 489, Glasser, W. and Hatakeyama, H., eds., ACS symposium series, American Chemical Society, Washington, DC, pp. 329–340.

    Google Scholar 

  16. Svedas, V. (2000), Appl. Spectrosc. 54, 420–425.

    Article  CAS  ADS  Google Scholar 

  17. Weise, U. and Paulapuro, H. (1999), J. Pulp Pap. Sci. 25, 163–166.

    CAS  Google Scholar 

  18. Maloney, T. C. (2000), Acta Polytech. Scand. Chem. Technol. Ser. 275, 1–52.

    CAS  Google Scholar 

  19. Maloney, T. C., Johansson, T., and Paulapuro, H. (1998), Pap. Technol. 39, 44–47.

    Google Scholar 

  20. McCrystal, C. B., Ford, J. L., Rajabi, S., and Ali, R. (1999), J. Pharm. Sci. 88, 792–796.

    Article  PubMed  CAS  Google Scholar 

  21. Hardy, B. J. and Sarko, I. (1996), Appl. Polymers 37, 1833–1839.

    CAS  Google Scholar 

  22. Kondo, T. and Sawatri, C. (1996), Polymers 37, 393–398.

    Article  CAS  Google Scholar 

  23. Wood, T. M. (1971), Biochem. J. 121, 353–362.

    PubMed  CAS  Google Scholar 

  24. Reese, E. T. and Mandels, M. (1963), in Methods in Carbohydrate Chemistry, Whistler, L., ed., Academic, New York, pp. 139–143.

    Google Scholar 

  25. Vyas, S., Absar, A., and Lachke, A. (2003), in Microbiology and Biotechnology for Sustainable Development, Jain, P. C., ed., CBS Publishers, New Delhi, India, pp. 283–292.

    Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randfall, R. L. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  27. Sathivel, C., Lachke, A., and Radhakrishnan, S. (1995), J. Chromatogr. A 705, 400–405.

    Article  Google Scholar 

  28. Miller, G. L., Blum, R., Gelnnon, W. E., and Burton, A. (1960), Anal. Biochem. 2, 127–132.

    Article  Google Scholar 

  29. Sadana, J. C., Lachke, A. H., and Patil, R. V. (1984), Carbohydr. Res. 133, 297–312.

    Article  CAS  Google Scholar 

  30. Hurst, P. L., Nielsen, J., Sullivan, P. A., and Shepherd, M. G. (1977), Biochem. J. 165, 33–41.

    PubMed  CAS  Google Scholar 

  31. Segal, L., Creely, J. J., Martin, A. E., and Conrad, C. M. (1959), Textile Res. J. 29, 786–793.

    CAS  Google Scholar 

  32. Durand, H., Soucaille, P., and Tiraby, G. (1984), Enzyme Microb. Technol. 6, 175–180.

    Article  CAS  Google Scholar 

  33. Christakopoulos, P., Kekos, D., Macris, B. J., Claeyssens, M., and Bhat, M. K. (1995), J. Biotechnol. 39, 85–93.

    Article  CAS  Google Scholar 

  34. Hong, S. W., Hah, Y. C., Maeng, P., and Jeong, C. S. (1986), Enzyme Microb. Technol. 8, 227–235.

    Article  CAS  Google Scholar 

  35. Beldman, G., Searle-Van Leewen, M. F., Rombouts, F. M., and Voragen, F. G. J. (1985), Eur. J. Biochem. 146, 301–308.

    Article  PubMed  CAS  Google Scholar 

  36. Bhat, K. M., McCrae, S. I., and Wood, T. M. (1989), Carbohydr. Res. 190, 279–329.

    Article  CAS  Google Scholar 

  37. Hatakeyama, T., Ikeda, M., and Hatakeyama, H. (1987), in Cellulose and Its Derivatives, Kennedy, J. F., Phyllips, G. O., Wedlock, D. J., and Williams, P. A., eds., Ellis Horwood, Chichester, UK, p. 23.

    Google Scholar 

  38. Hatakeyama, T. and Liu, Z. (1998), in Handbook of Thermal Analysis, Wiley, New York.

    Google Scholar 

  39. Hoffmann, K. and Hatakeyama, H. (1995), Macromol. Chem. Phys. 196, 99–113.

    Article  Google Scholar 

  40. Nakamura, K., Hatakeyama, T., and Hatakeyama, H. (1981), Textile Res. J. 53, 607–613.

    Google Scholar 

  41. Hatakeyama, T., Nakamura, K., and Hatakeyama, H. (2000), Thermochim. Acta 352–353, 233–239.

    Article  Google Scholar 

  42. Froix, M. F. and Nelson, R. (1975), Macromolecules 8, 726–730.

    Article  CAS  Google Scholar 

  43. Magane, F. C., Portas, H. J., and Wakeham, H. (1947), J. Am. Chem. Soc. 69, 1896–1902.

    Article  Google Scholar 

  44. Long, F. A. and Richman, D. (1960), J. Am. Chem. Soc. 82, 513–519.

    Article  CAS  Google Scholar 

  45. Murata, M., Hoshino, E., Yokosuka, M., and Suzuki, A. (1993), J. Am. Oil Chem. Soc. 70, 153–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Lachke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, S., Pradhan, S.D., Pavaskar, N.R. et al. Differential thermal and thermogravimetric analyses of bound water content in cellulosic substrates and its significance during cellulose hydrolysis by alkaline active fungal cellulases. Appl Biochem Biotechnol 118, 177–188 (2004). https://doi.org/10.1385/ABAB:118:1-3:177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:118:1-3:177

Index Entries

Navigation