Skip to main content
Log in

Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility

  • Session 3—Bioprocessing, Including Separations
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyons, T. P., Kelsall, D., and Murtagh, J. eds. (1995), The, Alcohol Textbook, Nottingham University Press, Nothingam, UK.

    Google Scholar 

  2. Mielenz, J. R. (2001), Curr. Opin. Microbiol 4, 324–329.

    Article  PubMed  CAS  Google Scholar 

  3. Von Sivers, M. and Zacchi, G., (1996), Bioresour. Technol. 56, 131–140.

    Article  Google Scholar 

  4. Hungarian Central Statistical Office. (2001), Statistical Annual Reviews of the Hungarian Agriculture, Hungarian Central Statistical Office, Budapest, Hungary.

    Google Scholar 

  5. Sokhansanj, S., Turhollow, A., Cushman, J., and Cundi, J., (2002), Biomass Bioenergy 23, 347–355.

    Article  Google Scholar 

  6. Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.

    Article  PubMed  CAS  Google Scholar 

  7. Elshafei, A. M., Vega, J. L., Klasson, K. T., Clausen, E. C., and Gaddy, J. L. (1991), Bioresour. Technol. 35, 73–80.

    Article  CAS  Google Scholar 

  8. Brownell, H. H. and Saddler, J. N. (1984), Biotechnol. Bioeng. Symp. 14, 55–68.

    CAS  Google Scholar 

  9. Clark, T. A. and Mackie, K. L. (1987), J. Wood Chem. Technol. 7(3), 373–403.

    CAS  Google Scholar 

  10. Schmidt, A. S., Puls, J., and Bjerre, A. B., (1996), in Biomass for Energy and Environment Proceedings of the 9th European Bioenergy Conference vol. 3, Chartier, P., Ferrero, G. L., Henius, U. M., Hultberg, S., Sachau, J. and Wiinbland, M., eds. Pergamon, Oxford, UK, pp. 1510–1515.

    Google Scholar 

  11. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Bioresour. Technol. 59, 129–136.

    Article  CAS  Google Scholar 

  12. Saddler, J. N., Ramos, L. P., and Breuil, C. (1993), in Bioconversion of Forest and Agricultural Plant Residues, C.A.B. International, Wallingford, UK, pp. 73–91.

    Google Scholar 

  13. Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., and Ballesteros, M. (2002), Process Biochem. 38, 187–192.

    Article  CAS  Google Scholar 

  14. Vlasenko, E. Y., Ding, H., Labavitch, J. M., and Shoemaker S. P. (1997), Bioresour. Technol. 59, 109–119.

    Article  CAS  Google Scholar 

  15. Stenberg, K., Tenborg, C., Galbe, M., and Zacchi G. (1998), Appl. Biochem. Biotechnol. 71, 299–308.

    CAS  Google Scholar 

  16. Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microb. Technol. 19(3), 220–225.

    Article  CAS  Google Scholar 

  17. Klinke, H. B., Ahring, B. K., Schmidt A. S., and Thomsen, A. B. (2002), Bioresour. Technol. 82(1), 15–26.

    Article  PubMed  CAS  Google Scholar 

  18. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1999), Enzyme Microb. Technol., 19(6), 470–476.

    Article  Google Scholar 

  19. Karr, W. E., Cool, L. G., Marriman, M. M., and Brink, D. L. (1991), J. Wood, Chem. Technol. 11, 447–463.

    Google Scholar 

  20. Eklund, R., Galbe, M., and Zacchi, G. (1988), J. Wood, Chem. Technol. 8(3), 379–392.

    CAS  Google Scholar 

  21. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–33.

    PubMed  CAS  Google Scholar 

  22. Berghem, L. E. R. and Petterson, L. G. (1974), Eur. J. Biochem. 46, 295–305.

    Article  PubMed  CAS  Google Scholar 

  23. Varga, E., Szengyel, Z., and Réczey, K. (2002), Appl. Biochem. Biotechnol. 98–100, pp. 73–87.

    Article  PubMed  Google Scholar 

  24. Garrote, G., Dominguez, H., and Parajó J. C. (2002), Process Biochem. 37, 1067–1073.

    Article  CAS  Google Scholar 

  25. Tenborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmquist, E., and Hahn-Hägerdal, B. (1998), Appl. Biochem. Biotechnol. 70–72, 3–15.

    Google Scholar 

  26. Larsson, S., Palmquist, E., Hahn-Hägerdal, B., Tenborg, C., Stenberg, K., Zacchi, G., and Nilvebrant, N. O. (1999), Enzyme Microb. Technol. 24, 151–158.

    Article  CAS  Google Scholar 

  27. Varga, E., Schmidt, A. S., Réczey, K., and Thomsen, A. B. (2002), Appl. Biochem. Biotechnol. 104, 37–49.

    Article  Google Scholar 

  28. Olsson, L. and Hahn-Hägerdal, B. (1993), Proc. Biochem. 28, 249–257.

    Article  CAS  Google Scholar 

  29. Hahn-Hägerdal, B., Lindén, T., Senac, T., and Skoong, K. (1991), Appl. Biochem. Biotechnol. 28/29, 131–134.

    Article  Google Scholar 

  30. Stenberg, K., Bollók, M., Réczey, K., Galbe, M., and Zacchi, G. (2000), Biotechnol. Bioeng. 68, 204–210.

    Article  PubMed  CAS  Google Scholar 

  31. Stenberg, K., Galbe, M., and Zacchi, G. (2000), Enzyme Microb. Technol. 26, 71–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Réczey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, E., Réczey, K. & Zacchi, G. Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl Biochem Biotechnol 114, 509–523 (2004). https://doi.org/10.1385/ABAB:114:1-3:509

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:509

Index Entries

Navigation