Skip to main content
Log in

Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover is emerging as a viable feedstock for producing bioethanol from renewable resources. Dilute-acid pretreatment of corn stover can solubilize a significant portion of the hemicellulosic component and enhance the enzymatic digestibility of the remaining cellulose for fermentation into ethanol. In this study, dilute H2SO4 pretreatment of corn stover was performed in a steam explosion reactor at 160°C, 180°C, and 190°C, approx 1 wt% H2SO4, and 70-s to 840-s residence times. The combined severity (Log10 [R o ] - pH), an expression relating pH, temperature, and residence time of pretreatment, ranged from 1.8 to 2.4. Soluble xylose yields varied from 63 to 77% of theoretical from pretreatments of corn stover at 160 and 180°C. However, yields >90% of theoretical were found with dilute-acid pretreatments at 190°C. A narrower range of higher combined severities was required for pretreatment to obtain high soluble xylose yields when the moisture content of the acid-impregnated feedstock was increased from 55 to 63 wt%. Simultaneous saccharification and fermentation (SSF) of washed solids from corn stover pretreated at 190°C, using an enzyme loading of 15 filter paper units (FPU)/g of cellulose, gave ethanol yields in excess of 85%. Similar SSF ethanol yields were found using washed solid residues from 160 and 180°C pretreatments at similar combined severities but required a higher enzyme loading of approx 25 FPU/g of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. (1984), Biotechnol. Bioeng. Symp. 14, 139–157.

    Google Scholar 

  2. Lin, K. W., Ladisch, M. R., Voloch, M., Patterson, J. A., and Noller, C. H. (1985), Biotechnol. Bioeng. 27, 1427–1433.

    Article  CAS  Google Scholar 

  3. Weimer, P. J., Chou, Y. C. T., Weston, W. M., and Chase, D. B. (1986), Biotechnol. Bioeng. Symp. 17, 5–18.

    CAS  Google Scholar 

  4. Rolz, C., de Arriola, M. C., Valladares, J., and de Cabrera, S. (1987), Process Biochem. 22, 17–23.

    CAS  Google Scholar 

  5. Torget, R., Werdene, P., Himmel, M., and Grohmann, K., (1990), Appl. Biochem. Biotechnol. 24/25, 115–126.

    Google Scholar 

  6. Grethlein, H. E. and Converse, A. O. (1991), Bioresour.e Technol. 36, 77–82.

    Article  CAS  Google Scholar 

  7. Chang, V. S. and Holtzapple, M. T. (2000), Appl. Biochem. Biotech. 84–86, 5–37.

    Article  Google Scholar 

  8. Torget, R., Himmel, M. E., and Grohmann, K. (1992), Appl. Biochem. Biotech. 34/35, 115–123.

    Google Scholar 

  9. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Bioresour. Technol. 59, 129–136.

    Article  CAS  Google Scholar 

  10. Schell, D. J., Walter, P. J., and Johnson, D. K. (1992), Appl. Biochem. Biotechnol. 34/35, 659–665.

    Google Scholar 

  11. Torget, R., Walter, P., Himmel, M. E., and Grohmann, K. (1991), Appl. Biochem. Biotechnol. 28/29, 75–86.

    Article  Google Scholar 

  12. Tucker, M. P., Farmer, J. D., Keller, F. A., Schell, D. J., and Nguyen, Q. A. (1998), Appl. Biochem. Biotech. 70–72, 25–35.

    Google Scholar 

  13. Nguyen, Q. A., Dickow, J. H., Duff, B. W., Farmer, J. D., Glassner, D. A., and Ibsen, K. N. (1996), Bioresour. Technol. 59, 189–196.

    Article  Google Scholar 

  14. Chum, H. L., Johnson, D. K., Black, S. K., and Overend, R. P. (1990), Appl. Biochem. Biotechnol. 24/25, 1–14.

    Google Scholar 

  15. Nguyen Q. A., Tucker, M. P., Keller, F. A., and Eddy, F. P. (2000), Appl. Biochem. Biotech. 84–86, 561–570.

    Article  Google Scholar 

  16. Kim, K. H., Tucker, M. P., and Nguyen, Q. A. (2002), Biotechnol. Prog. 18, 489–494.

    Article  CAS  Google Scholar 

  17. Dowe, N. and McMillan, J. (2001), NREL Analytical Procedure, No. 008, National Renewable Energy Laboratory, Golden, CO; (Website: http://www.ott.doe.gov/biofuels/analytical_methods.html#LAP-002).

    Google Scholar 

  18. Nguyen, Q. A., Tucker, M. P., Boynton, B., Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol. 70–72, 77–87.

    Google Scholar 

  19. Ruiz, R. and Ehrman, T. (1996), NREL Analytical Procedure, No. 014, National Renewable Energy Laboratory, Golden, CO. (Website: http://www.ott.doe.gov/biofuels/analytical_methods.html#LAP-014)

    Google Scholar 

  20. Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J., and Templeton, D. W. (2003), Appl. Biochem. Biotechnol. 105–108, 5–16.

    Article  Google Scholar 

  21. Hamilton, F. and Leopold, B., eds. (1993), in Pulp and Paper Manufacture, vol. 3, Joint Textbook Committee of the Paper Industry of the United States and Canada, Atlanta, p. 119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin P. Tucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, M.P., Kim, K.H., Newman, M.M. et al. Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Appl Biochem Biotechnol 105, 165–177 (2003). https://doi.org/10.1385/ABAB:105:1-3:165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:105:1-3:165

Index Entries

Navigation