Skip to main content
Log in

Resonance Meets Homogenization

Construction of Meta-Materials with Astonishing Properties

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

Meta-materials are assemblies of small components. Even though the single component consists of ordinary materials, the meta-material may behave effectively in a way that is not known from ordinary materials. In this text, we discuss some meta-materials that exhibit unusual properties in the propagation of sound or light. The phenomena are based on resonance effects in the small components. The small (sub-wavelength) components can be resonant to the wave-length of an external field if they incorporate singular features such as a high contrast or a singular geometry. Homogenization theory allows to derive effective equations for the macroscopic description of the meta-material and to verify its unusual properties. We discuss three examples: Sound-absorbing materials, optical materials with a negative index of refraction, perfect transmission through grated metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Dispersive limits in the homogenization of the wave equation. Ann. Fac. Sci. Toulouse Math. (6) 12(4), 415–431 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb. A 126(2), 297–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. (9) 77(2), 153–208 (1998). doi:10.1016/S0021-7824(98)80068-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 56(1), 141–161 (2010). doi:10.1007/s11565-010-0095-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Beale, J.T.: Scattering frequencies of reasonators. Commun. Pure Appl. Math. 26, 549–563 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellieud, M., Bouchitté, G.: Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 26(3), 407–436 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Bouchitté, G., Bellieud, M.: Homogenization of a soft elastic material reinforced by fibers. Asymptot. Anal. 32(2), 153–183 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Bouchitté, G., Bourel, C., Felbacq, D.: Homogenization of the 3D Maxwell system near resonances and artificial magnetism. C. R. Math. Acad. Sci. Paris 347(9–10), 571–576 (2009). doi:10.1016/j.crma.2009.02.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchitté, G., Felbacq, D.: Low frequency scattering by a set of parallel metallic rods. In: Mathematical and Numerical Aspects of Wave Propagation, Santiago de Compostela, 2000, S. 226–230. SIAM, Philadelphia, PA (2000)

    Google Scholar 

  11. Bouchitté, G., Felbacq, D.: Homogenization near resonances and artificial magnetism from dielectrics. C. R. Math. Acad. Sci. Paris 339(5), 377–382 (2004). doi:10.1016/j.crma.2004.06.018

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouchitté, G., Felbacq, D.: Homogenization of a wire photonic crystal: the case of small volume fraction. SIAM J. Appl. Math. 66(6), 2061–2084 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bouchitté, G., Schweizer, B.: Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8(3), 717–750 (2010). doi:10.1137/09074557X

    Article  MathSciNet  MATH  Google Scholar 

  14. Bouchitté, G., Schweizer, B.: Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Netw. Heterog. Media 8(4), 857–878 (2013). doi:10.3934/nhm.2013.8.857

    Article  MathSciNet  MATH  Google Scholar 

  15. Brown, R., Hislop, P.D., Martinez, A.: Eigenvalues and resonances for domains with tubes: Neumann boundary conditions. J. Differ. Equ. 115(2), 458–476 (1995). doi:10.1006/jdeq.1995.1023

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, Q., Lalanne, P.: Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88, 057403 (2002). doi:10.1103/PhysRevLett.88.057403

    Article  Google Scholar 

  17. Chen, Y., Lipton, R.: Resonance and double negative behavior in metamaterials. Arch. Ration. Mech. Anal. 209(3), 835–868 (2013). doi:10.1007/s00205-013-0634-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Cherednichenko, K.D., Smyshlyaev, V.P., Zhikov, V.V.: Non-local homogenized limits for composite media with highly anisotropic periodic fibres. Proc. R. Soc. Edinb. A 136(1), 87–114 (2006). doi:10.1017/S0308210500004455

    Article  MathSciNet  MATH  Google Scholar 

  19. Cherednichenko, K.D., Smyshlyaev, V.P., Zhikov, V.V.: Non-local homogenized limits for composite media with highly anisotropic periodic fibres. Proc. R. Soc. Edinb. A 136(1), 87–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris 335(1), 99–104 (2002). doi:10.1016/S1631-073X(02)02429-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Dohnal, T., Lamacz, A., Schweizer, B.: Bloch-wave homogenization on large time scales and dispersive effective wave equations. Multiscale Model. Simul. 12(2), 488–513 (2014). doi:10.1137/130935033

    Article  MathSciNet  MATH  Google Scholar 

  22. Felbacq, D., Bouchitté, G.: Homogenization of a set of parallel fibres. Waves Random Media 7(2), 245–256 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Felbacq, D., Bouchitté, G.: Left handed media and homogenization of photonic crystals. Opt. Lett. 30, 1189–1191 (2005)

    Article  Google Scholar 

  24. Felbacq, D., Bouchitté, G.: Negative refraction in periodic and random photonic crystals. New J. Phys. 7, 159 (2005)

    Article  Google Scholar 

  25. Fernández, C., Menzala, G.P.: Resonances of an elastic resonator. Appl. Anal. 76(1–2), 41–49 (2000). doi:10.1080/00036810008840864

    Article  MathSciNet  MATH  Google Scholar 

  26. Gadyl’shin, R.R.: On analogues of the Helmholtz resonator in averaging theory. Mat. Sb. 193(11), 43–70 (2002). doi:10.1070/SM2002v193n11ABEH000691

    Article  MathSciNet  MATH  Google Scholar 

  27. Gadyl’shin, R.R.: On domains with a narrow isthmus in the critical case. Proc. Steklov Inst. Math. 1, S68–S74 (2003). Asymptotic Expansions Approximation Theory Topology, suppl. 1

    MathSciNet  MATH  Google Scholar 

  28. Holloway, C.L., Kuester, E.F., Baker-Jarvis, J., Kabos, P.: A double negative (dng) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003). doi:10.1109/TAP.2003.817563

    Article  Google Scholar 

  29. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). Translated from the Russian by G.A. Yosifian [G.A. Iosifyan]

    Book  Google Scholar 

  30. Joly, P., Tordeux, S.: Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots. M2AN Math. Model. Numer. Anal. 40(1), 63–97 (2006). doi:10.1051/m2an:2006008

    Article  MathSciNet  MATH  Google Scholar 

  31. Joly, P., Tordeux, S.: Matching of asymptotic expansions for waves propagation in media with thin slots. II. The error estimates. M2AN Math. Model. Numer. Anal. 42(2), 193–221 (2008). doi:10.1051/m2an:2008004

    Article  MathSciNet  MATH  Google Scholar 

  32. Kohn, R., Shipman, S.: Magnetism and homogenization of micro-resonators. Multiscale Model. Simul. 7(1), 62–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lamacz, A., Schweizer, B.: Effective Maxwell equations in a geometry with flat rings of arbitrary shape. SIAM J. Math. Anal. 45(3), 1460–1494 (2013). doi:10.1137/120874321

    Article  MathSciNet  MATH  Google Scholar 

  34. Lamacz, A., Schweizer, B.: A negative index meta-material for Maxwell’s equations. Preprint 2015-06 of the TU Dortmund (2015, submitted). http://hdl.handle.net/2003/34176

  35. Lamacz, A., Schweizer, B.: Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Tech. rep., TU Dortmund (2016)

  36. Lipton, R., Schweizer, B.: Negative magnetic response in a material with perfectly conducting split rings (2016, in preparation)

  37. Milton, G.W.: Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors. New J. Phys. 12(3), 033035 (2010)

    Article  Google Scholar 

  38. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989). doi:10.1137/0520043

    Article  MathSciNet  MATH  Google Scholar 

  39. O’Brien, S., Pendry, J.: Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Phys. Condens. Matter 14, 6383–6394 (2002)

    Article  Google Scholar 

  40. Pendry, J.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  41. Porto, J.A., Garcia-Vidal, F.J., Pendry, J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999). doi:10.1103/PhysRevLett.83.2845

    Article  Google Scholar 

  42. Sánchez-Palencia, E.: Nonhomogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

    MATH  Google Scholar 

  43. Schweizer, B.: The low-frequency spectrum of small Helmholtz resonators. Proc. R. Soc. A 471(2174), 20140339 (2015). doi:10.1098/rspa.2014.0339

    Article  MathSciNet  Google Scholar 

  44. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001). doi:10.1126/science.1058847

    Article  Google Scholar 

  45. Smith, D., Pendry, J., Wiltshire, M.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  Google Scholar 

  46. Veselago, V.: The electrodynamics of substances with simultaneously negative values of \(\varepsilon \) and \(\mu \). Sov. Phys. Usp. 10, 509–514 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Schweizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweizer, B. Resonance Meets Homogenization. Jahresber. Dtsch. Math. Ver. 119, 31–51 (2017). https://doi.org/10.1365/s13291-016-0153-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-016-0153-2

Keywords

Mathematics Subject Classification (2000)

Navigation