Skip to main content
Log in

On Sign Preservation for Clotheslines, Curtain Rods, Elastic Membranes and Thin Plates

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

All problems mentioned in the title seem to have one thing in common. Whenever a force is applied in one direction, the object moves in that direction. At least this is what one might expect. The corresponding boundary value problems contain differential equations of second order for line and membrane, while rod, or beam, and plate are modeled through fourth order differential equations. How a positive source will give a positive solution crucially depends on this order and the boundary conditions. We will present a survey concerning the so-called positivity preserving property for these various models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, San Diego (2003)

    MATH  Google Scholar 

  2. Amann, H.: Fixed point equations and nonlinear eigenvalue problem in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I.: Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie der partiellen Differentialgleichungen auch im Zusammenhang mit der Elastizitätstheorie, I, II. Czechoslov. Math. J. 11(86), 76–105 (1961), 165–203

    Google Scholar 

  4. Babuška, I., Pitkäranta, J.: The plate paradox for hard and soft simple support. SIAM J. Math. Anal. 21, 551–576 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berggren, E.G., Nissen, A., Paulsson, B.S.: Track deflection and stiffness measurements from a track recording car. Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit 228, 570–580 (2014)

    Article  Google Scholar 

  6. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York/London (1979)

    MATH  Google Scholar 

  7. Beygmohammadi, M., Sweers, G.: Hopf’s boundary point lemma, the Krein–Rutman theorem and a special domain. Positivity 18, 81–94 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blaauwendraad, J.: Plates and FEM, Surprises and Pitfalls. Solid Mechanics and Its Applications, vol. 171. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2(4), 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boggio, T.: Sulle funzioni di green d’ordine m. Rend. Circ. Mat. Palermo 20, 97–135 (1905)

    Article  MATH  Google Scholar 

  11. Calvert, B.: On T-accretive operators. Ann. Math. 94, 291–314 (1972)

    MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G., Glowinski, R.: Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Eng. 5, 277–295 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G., Raviart, P.-A.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, Proc. Sympos., Math. Res. Center Univ. Wisconsin, Madison, Wis. 1974, vol. 33, pp. 125–145. Academic Press, New York (1974)

    Chapter  Google Scholar 

  14. Coffman, C.V.: On the structure of solutions \(\Delta ^{2}u=\lambda u\) which satisfy the clamped plate conditions on a right angle. SIAM J. Math. Anal. 13, 746–757 (1982)

    Article  MathSciNet  Google Scholar 

  15. Coffman, C.V., Duffin, R.J.: On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle. Adv. Appl. Math. 1, 373–389 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coffman, C.V., Duffin, R.J., Shaffer, D.H.: The fundamental mode of vibration of a clamped annular plate is not of one sign. In: Constructive Approaches to Mathematical Models Proc. Conf. in honor of R.J. Duffin, Pittsburgh, Pa., 1978, pp. 267–277. Academic Press, New York/London/Toronto (1979)

    Google Scholar 

  17. Coffman, C.V., Grover, C.L.: Obtuse cones in Hilbert spaces and applications to partial differential equations. J. Funct. Anal. 35, 369–396 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cranston, M., Fabes, E., Zhao, Z.: Conditional gauge and potential theory for the Schrödinger operator. Trans. Am. Math. Soc. 307, 171–194 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Dahan-Dalmédico, A.: Mécanique et théorie des surfaces: les travaux de Sophie Germain. Hist. Math. 14, 347–365 (1987)

    Article  MATH  Google Scholar 

  20. Dall’Acqua, A., Meister, Ch., Sweers, G.: Separating positivity and regularity for fourth order Dirichlet problems in 2d-domains. Analysis 25, 205–261 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Dall’Acqua, A., Sweers, G.: The clamped plate equation on the Limaçon. Ann. Mat. Pura Appl. (4) 184, 361–374 (2005)

    Article  MathSciNet  Google Scholar 

  22. Davini, C.: \(\varGamma \)-Convergence of external approximations in boundary value problems involving the bi-Laplacian. J. Comput. Appl. Math. 140, 185–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Davini, C.: Gaussian curvature and Babuška’s paradox in the theory of plates. In: Rational Continua, Classical and New, pp. 67–87. Springer, Milan (2003)

    Chapter  Google Scholar 

  24. Davini, C.: private communication

  25. Davini, C., Pitacco, I.: Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal. 35, 677–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820–836 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. De Coster, C., Nicaise, S., Sweers, G.: Solving the biharmonic Dirichlet problem on domains with corners. Math. Nachr. 288, 854–871 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Duffin, R.J.: On a question of Hadamard concerning super-biharmonic functions. J. Math. Phys. 27, 253–258 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  29. Duffin, R.J., Shaffer, D.H.: On the modes of vibration of a ring-shaped plate. Bull. Am. Math. Soc. 58, 652 (1952)

    Google Scholar 

  30. Engliš, M., Peetre, J.: A Green’s function for the annulus. Ann. Mat. Pura Appl. (4) 171, 313–377 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti (1744)

    MATH  Google Scholar 

  32. Fraser, C.G.: Mathematical technique and physical conception in Euler’s investigation of the elastica. Centaurus 34, 211–246 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedrichs, K.: Die Randwert- und Eigenwertprobleme aus der Theorie der elastischen Platte. Math. Ann. 98, 205–247 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  34. Frobenius, G.: Über Matrizen aus nicht negativen Elementen. Sitzungsber. Preuss. Akad. Wiss., Berlin (1912), pp. 456–477

    MATH  Google Scholar 

  35. Garabedian, P.R.: A partial differential equation arising in conformal mapping. Pac. J. Math. 1, 485–524 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gazzola, F.: Mathematical Models for Suspension Bridges, Nonlinear Structural Instability, MS&A. Modeling, Simulation and Applications, vol. 15. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  37. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems. Springer Lecture Notes Series, vol. 1991. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  38. Gazzola, F., Sweers, G.: On positivity for the biharmonic operator under Steklov boundary conditions. Arch. Ration. Mech. Anal. 188, 399–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Germain, S.: Récherches sur la théorie des surfaces élastiques. Veuve Courcier, Paris (1821)

    Google Scholar 

  40. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  41. Grisvard, P.: Singularities in Boundary Value Problems. Recherches en Mathématiques Appliquées, vol. 22. Springer, Berlin/Heidelberg/New York (1992)

    MATH  Google Scholar 

  42. Grunau, H.-C., Robert, F.: Positivity and almost positivity of biharmonic Green’s functions under Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 195, 865–898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Grunau, H.-C., Robert, F., Sweers, G.: Optimal estimates from below for biharmonic Green functions. Proc. Am. Math. Soc. 139, 2151–2161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grunau, H.-C., Sweers, G.: Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions. Math. Nachr. 179, 89–102 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  45. Grunau, H.-C., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math. Ann. 307, 589–626 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Grunau, H.-C., Sweers, G.: The maximum principle and positive principal eigenfunctions for polyharmonic equations. In: Reaction Diffusion Systems, pp. 163–182. Marcel Dekker Inc., New York (1997)

    Google Scholar 

  47. Grunau, H.-C., Sweers, G.: Sign change for the Green function and the first eigenfunction of equations of clamped-plate type. Arch. Ration. Mech. Anal. 150, 179–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Grunau, H.-C., Sweers, G.: In any dimension a “clamped plate” with a uniform weight may change sign. Nonlinear Anal. 97, 119–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mémoires présentés par divers savants à l’Académie des Sciences, vol. 33, pp. 1–128 (1908)

    MATH  Google Scholar 

  50. Hadamard, J.: Sur certains cas interessants du problème biharmonique. In: Œuvres de Jacques Hadamard, Tomes III, pp. 1297–1299. Éditions du Centre National de la Recherche Scientifique, Paris (1968). Reprint of: IV Congr. Math. (1908), Rome

    Google Scholar 

  51. Jentzsch, P.: Über Integralgleichungen mit positivem Kern. J. Reine Angew. Math. 141, 235–244 (1912)

    MathSciNet  MATH  Google Scholar 

  52. Kadlec, J.: The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain. Czechoslov. Math. J. 14(89), 386–393 (1964)

    MathSciNet  MATH  Google Scholar 

  53. Kawohl, B., Sweers, G.: On ‘anti’-eigenvalues for elliptic systems and a question of McKenna and Walter. Indiana Univ. Math. J. 51, 1023–1040 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kondrat’ev, V.A.: Boundary problems for elliptic equations in domains with conical or angular points. Trans. Mosc. Math. Soc. 16, 227–313 (1967)

    MathSciNet  MATH  Google Scholar 

  55. Kozlov, V.A., Kondrat’ev, V.A., Maz’ya, V.G.: On sign variability and the absence of “strong” zeros of solutions of elliptic equations. Izv. Akad. Nauk SSSR, Ser. Mat. 53, 328–344 (1989) (Russian). Translation in Math. USSR-Izv. 34 (1990), 337–353

    MathSciNet  Google Scholar 

  56. Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Transl. no. 26, Providence (1960)

  57. Love, A.E.H.: On the small free vibrations and deformations of elastic shells. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 17, 491–549 (1888)

    Article  MATH  Google Scholar 

  58. Lundqvist, A., Dahlberg, T.: Dynamic train/track interaction including model for track settlement evolvement. Veh. Syst. Dyn. 41(Supplement), 667–676 (2004). Proceedings 18th IAVSD Symposium at Atsugi, Japan, August 24–29, 2003

    Google Scholar 

  59. Marenholtz, O.: Beam on viscoelastic foundation: an extension of Winkler’s model. Arch. Appl. Mech. 80, 93–102 (2010)

    Article  Google Scholar 

  60. Maz’ya, V.G., Nazarov, S.A.: On the Sapondzhyan–Babushka paradox in problems of the theory of thin plates. Dokl. Nats. Akad. Nauk Armen. 78, 127–130 (1984)

    MATH  Google Scholar 

  61. Maz’ya, V.G., Nazarov, S.A.: Paradoxes of the passage to the limit in solutions of boundary value problems for the approximation of smooth domains by polygons. Izv. Akad. Nauk SSSR, Ser. Mat. 50, 1156–1177 and 1343 (1986). Russian. Translation in: Math. USSR-Izv. 29, 511–533 (1987)

  62. McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98, 167–177 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  63. Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737–749 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nazarov, S.A., Sweers, G.: A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Differ. Equ. 233, 151–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nazarov, S.A., Sweers, G., Stylianou, A.: Paradoxes in problems on bending of polygonal plates with a hinged/supported edge. Dokl. Phys. 56, 439–443 (2011)

    Article  MathSciNet  Google Scholar 

  66. de Pagter, B.: Irreducible compact operators. Math. Z. 192, 14–153 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  67. Parini, E., Stylianou, A.: On the positivity preserving property of hinged plates. SIAM J. Math. Anal. 41, 2031–2037 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Perron, O.: Zur Theorie der Matrizen. Math. Ann. 64, 248–263 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  69. Poisson, D.: Mémoire sur les surfaces élastiques. In: Mémoires de l’Institut 1812, Paris, pp. 167–226 (1816)

    Google Scholar 

  70. Protter, M.H.: Unique continuation for elliptic equations. Trans. Am. Math. Soc. 95, 81–91 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  71. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1967)

    MATH  Google Scholar 

  72. Sapondzhyan, O.M.: Bending of a simply supported polygonal plate. Izv. Akad. Nauk. Arm. SSR 5, 9–46 (1952)

    Google Scholar 

  73. Schröder, J.: Operator Inequalities. Mathematics in Science and Engineering, vol. 147. Academic Press, New York/London (1980)

    MATH  Google Scholar 

  74. Shapiro, H.S., Tegmark, M.: An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign. SIAM Rev. 36, 99–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  75. Stylianou, A., Sweers, G.: Comparing hinged and supported rectangular plates. C. R., Méc. 338, 489–492 (2010)

    Article  MATH  Google Scholar 

  76. Sweers, G.: A strong maximum principle for a noncooperative elliptic system. SIAM J. Math. Anal. 20, 367–371 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  77. Sweers, G.: Strong positivity in \(C(\overline{\varOmega })\) for elliptic systems. Math. Z. 209, 251–271 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sweers, G.: A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 54, 79–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. Sweers, G.: Positivity for the Navier bilaplace, an anti-eigenvalue and an expected lifetime. Discrete Contin. Dyn. Syst. 7(4), 839–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  80. Sweers, G.: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch. Math. 107, 59–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ulm, M.: The interval of resolvent-positivity for the biharmonic operator. Proc. Am. Math. Soc. 127, 481–489 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  82. Wigley, N.M.: Development of the mapping function at a corner. Pac. J. Math. 15, 1435–1461 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Sweers.

Appendices

Appendix A: 1d Proofs when \(\lambda >0\)

The result of Lemma 2.1 is standard. Lemma 2.2 and 2.3 can be found in [81] or [53]. The crucial idea to compute \(\lambda _{c}\) as ‘anti-eigenvalue’ or switched eigenvalue goes back to Schröder in [73]. See also [79]. The direct approach is to compute the Green function and see for which \(\lambda \) a sign change occurs. We choose this approach for the first cases, since it will supply us with a formula for the Green function, which has some independent interest. The calculations are tedious and maybe not so interesting, but since the existing results in the literature do not always agree, it might be useful to have them explicitely stated.

Proof of Lemma 2.1

Although we may restrict ourselves to the case \(\lambda >0\) one directly computes the following explicit Green function for (1):

$$ g_{\lambda } ( x,y ) =\left \{ \textstyle\begin{array}{l@{\quad }l} \frac{\sinh ( \sqrt{\lambda }\min ( x,y ) ) \sinh ( \sqrt{\lambda } ( 1-\max ( x,y ) ) ) }{\sqrt{\lambda }\sinh ( \sqrt{\lambda } ) } & \text{for }\lambda >0, \\ \frac{\sin ( \sqrt{-\lambda }\min ( x,y ) ) \sin ( \sqrt{-\lambda } ( 1-\max ( x,y ) ) ) }{\sqrt{-\lambda }\sin ( \sqrt{-\lambda } ) } & \text{for }\lambda < 0,\end{array}\displaystyle \right . $$
(A.1)

when \(\sqrt{-\lambda }\) is not a multiple of \(\pi \). Consistent with (5) one finds

$$ g_{0} ( x,y ) =\lim_{\lambda \rightarrow 0}g_{\lambda } ( x,y ) =\min ( x,y ) \bigl( 1-\max ( x,y ) \bigr) . $$

The denominator in (A.1) turns 0 for \(\lambda =-k^{2}\pi ^{2}\) with \(k\in \mathbb{N}^{+}\). Since the numerators in (A.1) changes sign for some \(x\) and \(y\) if and only if \(\lambda <-\pi ^{2}\), one finds that the Green function is positive if and only if \(\lambda >-\pi ^{2}\). □

Proof of Lemma 2.2

Let \(\lambda >0\) and write \(\mu =\sqrt[4]{\lambda /4}\). The function

$$\begin{aligned} w ( \mu ,p ) =&\sin ( \mu p ) \cosh \bigl( \mu ( 2-p ) \bigr) +\cos ( \mu p ) \sinh \bigl( \mu ( 2-p ) \bigr) \\ &{}+\sinh ( \mu p ) \cos \bigl( \mu ( 2-p ) \bigr) +\cosh ( \mu p ) \sin \bigl( \mu ( 2-p ) \bigr) , \end{aligned}$$
(A.2)

satisfies \(( ( \frac{d}{dx} ) ^{4}+\lambda ) w ( \mu ,x ) =0\). Then the Green function is

$$ g_{\lambda } ( x,y ) =\dfrac{w ( \mu ,\vert x-y\vert ) -w ( \mu ,x+y ) }{8\mu ^{3}(\cosh (2\mu )-\cos (2\mu ))}. $$
(A.3)

See Fig. 28 (right). Indeed, it satisfies the same differential equation as \(w\) for \(x\neq y\). One may check that

$$ w ( \mu ,p ) =w_{0} ( \mu ) +w_{2} ( \mu ) p^{2}+w_{3} ( \mu ) p^{3}+\mathcal{O} \bigl(p^{4} \bigr) $$
(A.4)

with

$$\begin{aligned} w_{0} ( \mu ) =&\sinh ( 2\mu ) +\sin ( 2\mu ) , \\ w_{2} ( \mu ) =&-\mu ^{2} \bigl( \sinh ( 2\mu ) -\sin ( 2 \mu ) \bigr) , \\ w_{3} ( \mu ) =&\tfrac{2}{3}\mu ^{3}\bigl(\cosh (2\mu )-\cos (2\mu )\bigr). \end{aligned}$$

The first odd power of \(p\) that appears in (A.4) is 3 and with its coefficient this explains

$$ \biggl( \frac{d}{dx} \biggr) ^{4}g_{\lambda } ( x,y ) + \lambda g_{\lambda } ( x,y ) =\delta _{y} ( x ) . $$

The boundary conditions \(g_{\lambda } ( 0,y ) =0\) and \(( \frac{d}{dx} ) ^{2}g_{\lambda } ( 0,y ) =0\) follow from (A.3) and (A.2). The ones in \(x=1\) from \(w ( \mu ,p ) =w ( \mu ,2-p ) \).

The first eigenvalue is reached for \(\lambda =-\pi ^{4}\) and for \(\lambda >-\pi ^{4}\) the Green function depends smoothly on \(\lambda \). Where does positivity break down for \(\lambda >0\)? One may show that for \(\lambda \mapsto g_{\lambda } ( \cdot ,\cdot ) \) no interior zero can appear and hence that new ‘zeros come in through the boundary’ at \(\lambda _{c}\) if \(\lambda _{c}\) denotes the value for which positivity of the Green function breaks down. Schröder [73] studied the question and showed that for \(\lambda =\lambda _{c}\) one encounters either a standard eigenvalue or a ‘switched’ eigenvalue. The standard eigenvalues are negative, so \(\lambda _{c}\) is, according to Schröder, an eigenvalue with a positive eigenfunction of the ‘switched’ eigenvalue problem:

$$ \left \{ \textstyle\begin{array}{l} \varphi ^{\prime \prime \prime \prime }+ \lambda \varphi =0\quad \text{in } ( 0,1 ) , \\ \varphi ( 0 ) =\varphi ^{\prime } ( 0 ) =\varphi ^{\prime \prime } ( 0 ) =0, \\ \varphi ( 1 ) =0. \end{array}\displaystyle \right . $$
(A.5)

Switched, since \(\varphi ^{\prime \prime } ( 1 ) =0\) is replaced by \(\varphi ^{\prime } ( 0 ) =0\). One could also have replaced \(\varphi ^{\prime \prime } ( 0 ) =0\) is replaced by \(\varphi^{\prime } ( 1 ) =0\), but by symmetry one finds the same value \(\lambda _{c}\). The first eigenfunction for (A.5) is

$$ \varphi ( x ) =\sin ( \mu _{c}x ) \cosh ( \mu _{c}x ) - \sinh ( \mu _{c}x ) \cos ( \mu _{c}x ) , $$

with \(\mu _{c}\) the first positive solution of \(\tan \mu _{c}=\tanh \mu _{c}\) and hence \(\lambda _{c}=4\mu _{c}^{4}\). □

Proof of Lemma 2.3

The Green function here is

$$ gg ( \mu ,x,y ) =g ( \mu ,x,y ) -rl ( \mu ,x,y ) -rr ( \mu ,x,y ) , $$

with \(g ( \mu ,x,y ) \) from (A.3),

$$\begin{aligned} rl ( \mu ,x,y ) =&\frac{\sin ( \mu ( 2-y ) ) \sinh ( \mu y ) -\sin ( \mu y ) \sinh ( \mu ( 2-y ) ) }{\mu ^{3} ( \cosh ( 2\mu ) -\cos ( 2\mu ) ) ( \cosh ( 2\mu ) +\cos ( 2\mu ) -2 ) }\\ &{}\times \bigl( \sin ( \mu ) \sinh ( \mu x ) \sin \bigl( \mu ( 1-x ) \bigr) -\sinh ( \mu ) \sin ( \mu x ) \sinh \bigl( \mu ( 1-x ) \bigr) \bigr) \end{aligned}$$

and

$$ rr ( \mu ,x,y ) =rl ( \mu ,1-x,1-y ) . $$

See Fig. 28 (left). The value \(\lambda _{1}=-\rho _{1}:=- ( 2\mu _{1} ) ^{4}\) corresponds to the first eigenvalue for the clamped problem

$$ \varphi _{1} ( x ) =\cos \bigl( 2\mu _{1} \bigl( x- \tfrac{1}{2} \bigr) \bigr) -\frac{\cos \mu _{1}}{\cosh \mu _{1}}\cosh \bigl( 2\mu _{1} \bigl( x-\tfrac{1}{2} \bigr) \bigr) $$

with \(\mu _{1}\) the first positive solution of \(\tan \mu _{1}+\tanh \mu _{1}=0\). To determine the value \(\lambda _{c}\) one considers the switched eigenvalue problem where \(\varphi ^{\prime } ( 1 ) =0\) is replaced by \(\varphi ^{\prime \prime } ( 0 ) =0\), which is again problem (A.5), and hence one obtains the same value \(\lambda _{c}\) as before. □

Remark A.1

It might appear surprising, that the value \(\lambda _{c}\) from Lemma 2.2 for the supported beam and the \(\lambda _{c}\) from Lemma 2.3 for the clamped beam are identical. The reason is that the corresponding switched eigenvalue problems in the sense of [73], which determine \(\lambda _{c}\), are identical. Indeed, in both cases one arrives at (A.5).

Fig. 28
figure 28

Sketches of the Green functions for the clamped (left) and for the hinged beam with \(\lambda =5184>\lambda _{c}\). On the dark (red) part the Green function is negative. The line depicts the diagonal, where \(x\mapsto ( \frac{d}{dx} ) ^{3}g_{\lambda } (x,y ) \) has a jump

Proof of Lemma 2.4

The first eigenfunction that corresponds to Problem 5, is

$$ \varphi _{1} ( x ) =\sinh ( \nu x ) -\sin ( \nu x ) - \frac{\sin \nu +\sinh \nu }{\cos \nu +\cosh \nu } \bigl( \cosh ( \nu x ) -\cos ( \nu x ) \bigr) , $$

with eigenvalue \(d_{1}=\nu _{1}^{4}\), where \(\nu _{1}\) the first positive zero of \(\cosh \nu \cos \nu +1=0\). According to [73] the critical value \(d_{c}\) is determined by one of the following two switched eigenvalue problems, namely

$$ \left \{ \textstyle\begin{array}{l} \varphi ^{\prime \prime \prime \prime }+ \lambda \varphi =0\quad \text{in } ( 0,1 ) , \\ \varphi ( 0 ) =\varphi ^{\prime } ( 0 ) =\varphi ^{\prime \prime } ( 0 ) =0, \\ \varphi ^{\prime \prime } ( 1 ) =0,\end{array}\displaystyle \right . \quad \text{and}\quad \left \{ \textstyle\begin{array}{l} \varphi ^{\prime \prime \prime \prime }+ \lambda \varphi =0\quad \text{in } ( 0,1 ) , \\ \varphi ( 0 ) =0, \\ \varphi ( 1 ) =\varphi ^{\prime \prime } ( 1 ) =\varphi ^{\prime \prime \prime } ( 1 ) =0.\end{array}\displaystyle \right . $$
(A.6)

The corresponding first eigenfunctions of (A.6) are related through

$$ \varphi _{\text{left}} ( x ) =\varphi _{\text{right}}^{\prime \prime } ( 1-x ), $$

and hence give the same eigenvalue. Since

$$ \varphi _{\text{left}} ( x ) =\sinh ( \mu _{1}x ) \cos ( \mu _{1}x ) -\sin ( \mu _{1}x ) \cosh ( \mu _{1}x ), $$

where \(\mu _{1}\) is the first positive number such that \(\varphi _{\text{left}}^{\prime \prime } ( 1 ) =0\), the same \(\mu _{1}\) as for Lemma 2.3 but here implying that \(d_{c}=4\mu _{1}^{4}\approx 125.141\). □

Appendix B: A Sharper Version of Kreĭn–Rutman

In a more general setting such as for cooperative systems the strong positivity condition, which is used for the version of Kreĭn–Rutman above, i.e. Theorem 3.4, is too restrictive. Instead of strong positivity, some weaker positivity is sufficient, whenever one can show that the spectral radius is strictly positive. Showing that the spectral radius is positive, most of the time will need some tedious constructions in order to obtain a more or less explicit (super)solution. A breakthrough is a theorem of de Pagter in [66]. The slight disadvantage is that one needs the structure of Banach lattices, which may not be a common tool for the analyst working on partial differential equations. The spaces \(C(\overline{\varOmega })\) and \(\mathcal{L}^{p} ( \varOmega ) \), home turf for analysts, with the natural ordering, however are Banach lattices. Let us briefly introduce the setting.

Definition B.1

The real vectorspace \(X\) gives a vector lattice \(( X,\leq ) \), if:

  1. 1.

    ≤ is a partial ordering on \(X\);

  2. 2.

    for all \(u,v,w\in X\): \(u\leq v\) implies \(u+w\leq v+w\);

  3. 3.

    for all \(u\in X\) and \(t\in \mathbb{R}^{+}\): \(0\leq u\) implies \(0\leq tu \);

  4. 4.

    for all \(u,v\in X\) also \(\inf ( u,v ) ,\sup ( u,v ) \in X\), where \(\inf ( u,v ) \) is the largest lower bound and \(\sup ( u,v ) \) the least upper bound for \(u,v\).

Note that \(u\in C(\overline{\varOmega })\) implies \(\vert u\vert \in C(\overline{\varOmega })\) and a similar result holds for \(\mathcal{L}^{p} ( \varOmega ) \) or \(W^{1,2} ( \varOmega ) \). For \(C^{1}(\overline{\varOmega })\) and \(W^{2,2} ( \varOmega ) \) such a result is not true. One also needs a relation between the norm and the absolute value of a function, \(\vert u\vert :=\sup ( u,-u ) \).

Definition B.2

If \(( X,\leq ) \) is a vector lattice and \(( X,\Vert \cdot \Vert ) \) a Banach space, then \(( X, \Vert \cdot \Vert ,\leq ) \) is a Banach lattice if for all \(u,v\in X\) one has: \(\vert u\vert \leq \vert v\vert \) implies \(\Vert u\Vert \leq \Vert v\Vert \).

The space \(( C(\overline{\varOmega }),\Vert \cdot \Vert _{\infty },\le ) \) is a Banach lattice and \(( W^{1,2} ( \varOmega ) ,\Vert \cdot \Vert _{W^{1,2}},\le ) \) is not.

Definition B.3

Let \(( X,\Vert \cdot \Vert ,\leq ) \) be a Banach lattice. A subspace \(I\subset X\) is called a lattice ideal, if

  1. 1.

    for all \(u\in I\) one has \(\vert u\vert \in I\) and

  2. 2.

    for all \(u\in I\) and \(v\in X\) with \(0\leq v\leq u\) one has \(v\in I\).

Definition B.4

Let \(( X,\Vert \cdot \Vert ,\leq ) \) be a Banach lattice and \(T\in \mathsf{L} ( X ) \). \(T\) is called irreducible if \(\{ 0 \} \) and \(X\) are the only closed \(T\)-invariant lattice ideals.

The properties of \(g_{1}\), \(g_{2}\), \(g_{3}\) and \(g_{5}\) in (5), (6), (10), (11), and for more general second order equations the strong maximum principle, imply that the corresponding \(\mathcal{G}\in \mathsf{L} ( C(\overline{\varOmega }) ) \) is irreducible, without assuming more on the boundary than that \(\mathcal{G}\) indeed maps from \(C(\overline{\varOmega })\) into \(C(\overline{\varOmega })\).

Using the concept of Banach lattice one may formulate an optimal version of the Kreĭn–Rutman theorem.

Theorem B.5

(Kreĭn–Rutman–de Pagter)

Let \(( X,\Vert \cdot \Vert ,\leq ) \) be a Banach lattice with \(\dim ( X ) >1\) and let \(T\in \mathsf{L} ( X ) \) be compact, positive and irreducible. Then:

  1. 1.

    the spectral radius \(\nu ( T ) \) is strictly positive;

  2. 2.

    \(\nu ( T ) \) is an eigenvalue for \(T\) with algebraic multiplicity 1;

  3. 3.

    all other eigenvalues \(\nu _{i}\) satisfy \(\vert \nu _{i}\vert <\nu ( T ) \);

  4. 4.

    the eigenfunction for \(\nu ( T ) \) is of fixed sign and (up to multiples) it is the only eigenfunction of \(T\) with a fixed sign.

The value \(\nu ( T ) \) is called the principal eigenvalue of \(T\) just as the corresponding eigenfunction is called the principal eigenfunction of \(T\).

The theorem combines a classical result of Kreĭn and Rutman with a result of de Pagter [66]. See also [37] or [77].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweers, G. On Sign Preservation for Clotheslines, Curtain Rods, Elastic Membranes and Thin Plates. Jahresber. Dtsch. Math. Ver. 118, 275–320 (2016). https://doi.org/10.1365/s13291-016-0147-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-016-0147-0

Keywords

Mathematics Subject Classification (2000)

Navigation