Skip to main content
Log in

Combined First and Second Order Variational Approaches for Image Processing

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like image restoration, registration, segmentation, super-resolution, and estimation of flow fields. We review recent progress in mathematical image processing by combining first and second order derivatives in the regularization term of variational models. We demonstrate the power of the proposed methods by two rather different applications. The approaches make use of two different splitting methods of the functional to obtain iterative numerical schemes which require in each step only the computation of simple proximal mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The scanning electron microscope tensile tests were performed at the Department of Mechanical and Process Engineering, University of Kaiserslautern by Dr. F. Balle, Prof. Dr. D. Eifler, and S. Schuff.

References

  1. Alvarez, L., Castao, C., Garca, M., Krissian, K., Mazorra, L., Salgado, A., Snchez, J.: Variational second order flow estimation for PIV sequences. Exp. Fluids 44(2), 291–304 (2008)

    Article  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2(3), 283–310 (1989)

    Article  Google Scholar 

  4. Babacan, S., Molina, R., Katsaggelos, A.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194(2), 689–701 (2013)

    Article  MATH  Google Scholar 

  6. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. (2014). arXiv:1210.2145v3

  7. Balle, F., Eifler, D., Fitschen, J.H., Schuff, S., Steidl, G.: Computation and visualization of local deformation for multiphase metallic materials by infimal convolution of TV-type functionals. ArXiv Preprint (2014)

  8. Bardsley, J.M.: Wavefront reconstruction methods for adaptive optics systems on ground-based telescopes. SIAM J. Matrix Anal. Appl. 30, 67–83 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Becker, F., Petra, S., Schnörr, C.: Optical flow. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, 2nd edn. Springer, Berlin (2014)

    Google Scholar 

  10. Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of cyclic data and applications in variational denoising. SIAM J. Imaging Sci. 7(4), 2916–2953 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bergmann, R., Weinmann, A.: Inpainting of cyclic data using first and second order differences. In: EMCVPR2015. Lecture Notes in Computer Science, pp. 155–168 (2015)

    Google Scholar 

  12. Bergmann, R., Weinmann, A.: A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data (2015). arXiv:1501.02684

  13. Bergounioux, M., Piffet, L.: A second-order model for image denoising. Set-Valued Var. Anal. 18(3-4), 277–306 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  15. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Technical Report LIDS-P-2848, Laboratory for Information and Decision Systems, MIT Press, Cambridge (2010)

  16. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Program., Ser. B 129(2), 163–195 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bioucas-Dias, J., Katkovnik, V., Astola, J., Egiazarian, K.: Absolute phase estimation: adaptive local denoising and global unwrapping. Appl. Opt. 47(29), 5358–5369 (2008)

    Article  Google Scholar 

  18. Bioucas-Dias, J., Valadão, G.: Phase unwrapping via graph cuts. IEEE Trans. Image Process. 16(3), 698–709 (2007)

    Article  MathSciNet  Google Scholar 

  19. Blaber, J., Adair, B., Antoniou, A.: Ncorr: Open-source 2D digital image correlation Matlab software (2014). www.ncorr.com

  20. Boţ, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization. J. Math. Imaging Vis. 49(3), 551–568 (2014)

    Article  MATH  Google Scholar 

  21. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 1–42 (2010)

    Article  MathSciNet  Google Scholar 

  22. Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011—9th International Conference on Sampling Theory and Applications (2011)

    Google Scholar 

  23. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) Computer Vision—ECCV 2004. Lecture Notes in Computer Science, vol. 3024, pp. 25–36. Springer, Berlin, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Article  Google Scholar 

  25. Burger, M., Sawatzky, A., Steidl, G.: First order algorithms in variational image processing (2014). arXiv:1412.4237

  26. Cai, J.-F., Chan, R., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46–53 (2010)

    Article  MathSciNet  Google Scholar 

  27. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, vol. 9, pp. 263–340 (2010)

    Google Scholar 

  28. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chan, R.H., Yuan, X., Zhang, W.: A phase model for point spread function estimation in ground-based astronomy. Sci. China Math. 56, 2701–2710 (2013)

    Article  MATH  Google Scholar 

  31. Chan, T.F., Esedoglu, S., Park, F.E.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image Represent. 18(6), 464–486 (2007)

    Article  Google Scholar 

  32. Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2002)

    MATH  MathSciNet  Google Scholar 

  33. Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Chu, Q., Jefferies, S., Nagy, J.G.: Iterative wavefront reconstruction for astronomical imaging. SIAM J. Sci. Comput. 35(5), 84–103 (2013)

    Article  MathSciNet  Google Scholar 

  35. Combettes, P., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixture of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, Berlin (2011)

    Chapter  Google Scholar 

  37. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)

    Article  Google Scholar 

  39. Deledalle, C.-A., Denis, L., Tupin, F.: NL-InSAR: nonlocal interferogram estimation. IEEE Trans. Geosci. Remote Sens. 49(4), 1441–1452 (2011)

    Article  Google Scholar 

  40. Demengel, F.: Fonctions à hessien borné. Ann. Inst. Fourier 34, 155–190 (1985)

    Article  MathSciNet  Google Scholar 

  41. Didas, S., Steidl, G., Setzer, S.: Combined 2 data and gradient fitting in conjunction with 1 regularization. Adv. Comput. Math. 30(1), 79–99 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35, 208–226 (2009)

    Article  MathSciNet  Google Scholar 

  43. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  44. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  45. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  48. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  49. Giaquinta, M., Modica, G., Souček, J.: Variational problems for maps of bounded variation with values in S 1. Calc. Var. 1(1), 87–121 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  50. Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 5(4), 483–548 (2006)

    MATH  MathSciNet  Google Scholar 

  51. Giaquinta, M., Mucci, D.: Maps of bounded variation with values into a manifold: total variation and relaxed energy. Pure Appl. Math. Q. 3(2), 513–538 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Goldluecke, B., Strekalovskiy, E., Cremers, D.: A natural total variation which arises from geometric measure theory. SIAM J. Imaging Sci. 5(2), 537–563 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  53. Goldstein, D., Osher, S.: The Split Bregman method for l 1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Goldstein, T., Esser, E., Baraniuk, R.: Adaptive primal-dual hybrid gradient methods for saddle-point problems. ArXiv Preprint (2013)

  55. Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1996)

    Google Scholar 

  56. Gousseau, Y., Morel, J.-M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33(3), 634–648 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. Greb, F., Krivobokova, T., Munck, A., von Cramon-Taubadel, S.: Regularized Bayesian estimation in generalized threshold regression methods. Bayesian Anal. 9(1), 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  58. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MATH  MathSciNet  Google Scholar 

  59. Hewer, A., Weickert, J., Seibert, H., Scheffer, T., Diebels, S.: Lagrangian strain tensor computation with higher order variational models. In: Proceedings of the British Machine Vision Conference. BMVA Press, Leeds (2013)

    Google Scholar 

  60. Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1), 109–133 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  61. Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow models in the framework of calculus of variations. SIAM J. Appl. Math. 23(1/2), 69–89 (2002)

    MATH  Google Scholar 

  62. Hintermüller, W., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  63. Holler, M., Kunisch, K.: On infimal convolution of tv type functionals and applications to video and image reconstruction. SIAM J. Imaging Sci. 7(4), 2258–2300 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  64. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  65. Hyman, J.M., Shashkov, M.J.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Math. Comput. Appl. 33(4), 81–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  66. Ivanov, K.V., Vasin, V.V., Tanana, V.P.: Theory of Linear Ill-Posed Problems and Its Applications. Brill, Utrecht, Boston, Koeln, Tokyo (2002)

    Book  MATH  Google Scholar 

  67. Jammalamadaka, S.R., SenGupta, A.: Topics in Circular Statistics. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  68. Lawson, C.L., Hansen, R.J.: Solving Least Squares Problems. Prentice Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  69. Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012)

    Article  MathSciNet  Google Scholar 

  70. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: IEEE ICCV 2013, pp. 2944–2951 (2013)

    Google Scholar 

  71. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  72. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equations with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  73. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  74. Maso, G.D., Fonseca, I., Leoni, G., Morini, M.: A higher order model for image restoration: the one-dimensional case. SIAM J. Math. Anal. 40(6), 2351–2391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  75. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  76. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2(48), 308–338 (2014)

    Article  Google Scholar 

  77. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 810–817 (2009)

    Google Scholar 

  78. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  79. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MATH  Google Scholar 

  80. Rust, B.W., O’Leary, D.P.: Residual periodograms for choosing regularization parameters for ill-posed problems. Inverse Probl. 24(3), 034005 (2008)

    Article  MathSciNet  Google Scholar 

  81. Sapiro, G.: Vector-valued active contours In: IEEE CVPR 1996, pp. 680–685

  82. Sawatzky, A., Brune, C., Kösters, T., Wübbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp. 71–142 (2013)

    Chapter  Google Scholar 

  83. Scherer, S., Werth, P., Pinz, A.: The discriminatory power of ordinal measures—towards a new coefficient. In: Computer Vision and Pattern Recognition. IEEE Computer Society Conference, vol. 1, pp. 76–81 (1999)

    Google Scholar 

  84. Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60(1), 1–27 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  85. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009)

    MATH  Google Scholar 

  86. Setzer, S.: Operator splittings, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  87. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation XII: San Antonio 2007, pp. 360–385 (2008)

    Google Scholar 

  88. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Commun. Math. Sci. 9(3), 797–872 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  89. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  90. Strauss, D.J., Teuber, T., Steidl, G., Corona-Strauss, F.I.: Exploiting the self-similarity in ERP images by nonlocal means for single-trial denoising. IEEE Trans. Neural Syst. Rehabil. Eng. 21(4), 576–583 (2013)

    Article  Google Scholar 

  91. Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: convex relaxation and efficient minimization. In: IEEE CVPR 2011, pp. 1905–1911. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  92. Strekalovskiy, E., Cremers, D.: Total cyclic variation and generalizations. J. Math. Imaging Vis. 47(3), 258–277 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  93. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  94. Tatschl, A., Kolednik, O.: A new tool for the experimental characterization of micro-plasticity. Mater. Sci. Eng. A 339(12), 265–280 (2003)

    Article  Google Scholar 

  95. Teuber, T., Steidl, G., Chan, R.H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Inverse Probl. 29, 1–28 (2013)

    Article  MathSciNet  Google Scholar 

  96. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) Pattern Recognition. Lecture Notes in Computer Science, vol. 5096, pp. 396–405. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  97. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  98. Wahba, G.: Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal. 14(4), 651–667 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  99. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  100. Weickert, J., Welk, M., Wickert, M.: L2-stable nonstandard finite differences for anisotropic diffusion. In: Scale-Space and Variational Methods in Computer Vision 2013. Lecture Notes in Computer Science, vol. 7893, pp. 380–391 (2013)

    Chapter  Google Scholar 

  101. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  102. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harmon. Anal. 24, 195–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  103. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging Vis. 28, 67–80 (2007)

    Article  Google Scholar 

  104. Yuan, J., Schnörr, C., Steidl, G.: Simultaneous higher order optical flow estimation and decomposition. SIAM J. Sci. Comput. 29(6), 2283–2304 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  105. Yuan, J., Schnörr, C., Steidl, G.: Convex Hodge decomposition and regularization of image flows. J. Math. Imaging Vis. 33(2), 169–177 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

Funding by the Deutsche Forschungsgemeinschaft (DFG) within the RTG GrK 1932 “Stochastic Models for Innovations in the Engineering Sciences”, project area P3, and within the DFG Grant STE571/11-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Steidl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steidl, G. Combined First and Second Order Variational Approaches for Image Processing. Jahresber. Dtsch. Math. Ver. 117, 133–160 (2015). https://doi.org/10.1365/s13291-015-0113-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-015-0113-2

Keywords

Mathematics Subject Classification

Navigation