Skip to main content

Advertisement

Log in

Measurement of Hydroxyl-Radical Formation in the Rat Striatum by In Vivo Microdialysis and GC-MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A GC-MS method was developed for measuring hydroxyl-radical capture products of salicylic acid, a common trapping agent for this reactive oxygen species, in samples obtained by in vivo cerebral microdialysis experiments. The assay employed liquid–liquid extraction followed by derivatization of 2,3- and 2,5-dihydroxybenzoic acid, along with 3,5-dihydroxybenzoic acid added as an internal standard. Due to their simple electron ionization mass spectra featuring [M–57]+ ions through the loss of tertiary alkyl group from the corresponding molecular ions, tert-butyldimethylsilyl (TBDMS) derivatives afforded straightforward method development based on selected-ion monitoring. In addition, tandem mass spectrometry probing collision-induced dissociation of [M–57]+ ions obtained from the isomeric tert-butyldimethylsilyl derivatives revealed characteristic differences in the resultant product-ion spectra. Our work has demonstrated the applicability of GC-MS for the assay of microdialysates for 2,3- and 2,5-dihydroxybenzoic acid by confirming that local administration of the excitotoxic glutamate into the rat striatum significantly increased in vivo hydroxyl-radical production in this brain region and that subsequent systemic administration of α-phenyl-tert-butylnitrone reversed glutamate-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaur H, Halliwell B (1996) In: Free radicals, a practical approach (Punchard NA, Kelly FJ, Eds), Oxford University Press, Oxford, pp 101–116

  2. Nakao N, Brundin P (1998) Prog Brain Res 116:245–263. doi:10.1016/S0079-6123(08)60441-0

    Article  CAS  Google Scholar 

  3. Tabner BJ, Turnbull S, El-Agnaf OMA, Allsop D (2002) Free Radic Biol Med 32:1076–1083. doi:10.1016/S0891-5849(02)00801-8

    Article  CAS  Google Scholar 

  4. Halliwell B (2006) J Neurochem 97:1634–1658. doi:10.1111/j.1471-4159.2006.03907.x

    Article  CAS  Google Scholar 

  5. Ferger B, Van Amsterdam C, Seyfried C, Kuschinsky K (1998) J Neurochem 70:276–280

    Article  CAS  Google Scholar 

  6. Teismann P, Ferger B (2000) Brain Res Protoc 5:204–210. doi:10.1016/S1385-299X(00)00014-3

    Article  CAS  Google Scholar 

  7. Themann C, Teismann P, Kuschinsky K, Ferger B (2001) J Neurosci Methods 108:57–64. doi:10.1016/S0165-0270(01)00370-3

    Article  CAS  Google Scholar 

  8. Halliwell B, Kaur H, Ingelman-Sundberg M (1991) Free Radic Biol Med 10:439–441. doi:10.1016/0891-5849(91)90052-5

    Article  CAS  Google Scholar 

  9. Molnar-Perl I, Horvath K, Bartha R (1998) Chromatographia 48:101–110. doi:10.1007/BF02467525

    Article  CAS  Google Scholar 

  10. http://www.piercenet.com/files/1504as4.pdf

  11. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  12. Prokai L, Kim HS, Zharikova A, Roboz J, Ma L, Deng L et al (1998) J Chromatogr A 800:59–68. doi:10.1016/S0021-9673(97)01295-8

    Article  CAS  Google Scholar 

  13. Thanikachalam S, Rajappan M, Kannappan V (2008) Chromatographia 67:41–47. doi:10.1365/s10337-007-0452-y

    Article  CAS  Google Scholar 

  14. Ungerstedt U, Herrera-Marschitz M, Jungnelius U, Ståhle L, Tossman U, Zetterström T (1982) Adv Biosci 37:219–231

    CAS  Google Scholar 

  15. Okazaki S, Nishida Y, Kawai H, Saito S (1996) Neurochem Res 21:1201–1207. doi:10.1007/BF02532396

    Article  CAS  Google Scholar 

  16. Weber GF (1999) Neurosci Biobehav Rev 23:1079–1086. doi:10.1016/S0149-7634(99)00041-X

    Article  CAS  Google Scholar 

  17. Glantz SA (2002) Primer of Biostatistics, 5th edn. McGraw-Hill, New York, pp 110–111

    Google Scholar 

  18. Wan FJ, Tung CS, Shiah IS, Lin HC (2006) Eur Neuropsychopharmacol 16:147–153. doi:10.1016/j.euroneuro.2005.07.002

    Article  CAS  Google Scholar 

  19. Prokai L, Prokai-Tatrai K, Perjesi P, Zharikova D, Perez J, Liu R et al (2003) Proc Natl Acad Sci USA 100:11741–11746. doi:10.1073/pnas.2032621100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided in part by the grant NS044765 from the National Institute of Health (Bethesda, MD, USA), and the STARS program of the University of North Texas Health Science Center. Laszlo Prokai is the Robert A. Welch Professor of the University of North Texas Health Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Prokai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, V., Bonds, D.V. & Prokai, L. Measurement of Hydroxyl-Radical Formation in the Rat Striatum by In Vivo Microdialysis and GC-MS. Chroma 68 (Suppl 1), 57–62 (2008). https://doi.org/10.1365/s10337-008-0703-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0703-6

Keywords

Navigation