Skip to main content
Log in

Automating first-principles phase diagram calculations

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

Devising a computational tool that assesses the thermodynamic stability of materials is among the most important steps required to build a “virtual laboratory,” where materials could be designed from first principles without relying on experimental input. Although the formalism that allows the calculation of solid-state phase diagrams from first principles is well established, its practical implementation remains a tedious process. The development of a fully automated algorithm to perform such calculations serves two purposes. First, it will make this powerful tool available to a large number of researchers. Second, it frees the calculation process from arbitrary parameters, guaranteeing that the results obtained are truly derived from the underlying first-principles calculations. The proposed algorithm formalizes the most difficult step of phase diagram calculations, namely the determination of the “cluster expanison,” which is a compact representation of the configurational dependence of the alloy’s energy. This is traditionally achieved by a fit of the unknown interaction parameters of the cluster expansion to a set of structural energies calculated from first principles. We present a formal statistical basis for the selection of both the interaction parameters to include in the cluster expansion and the structures to use to determine them. The proposed method relies on the concepts of cross-validation and variance minimization. An application to the calculation of the phase diagram of the Si-Ge, CaO-MgO, Ti-Al, and Cu-Au systems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kikuchi: Phys. Rev., 1951, 81, pp. 988–1003.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. J.C. Phillips and L. Kleinman: Phys. Rev., 1959, 116, pp. 287–94.

    Article  MATH  ADS  Google Scholar 

  3. M. Stone: J. R. Stat. Soc. B Met., 1974, 36, pp. 111–47.

    MATH  Google Scholar 

  4. J.W. Connolly and A.R. Williams: Phys. Rev. B, 1983, 27, pp. 5169–172.

    Article  ADS  Google Scholar 

  5. J.M. Sanchez, F. Ducastelle, and D. Gratias: Physica, 1984, 128A, pp. 334–50.

    MathSciNet  ADS  Google Scholar 

  6. K.-C. Li: Ann. Stat., 1987, 15, pp. 958–75.

    Article  MATH  Google Scholar 

  7. K. Binder and D.W. Heermann: Monte Carlo Simulation in Statistical Physics. Springer-Verlag, New York, 1988.

    MATH  Google Scholar 

  8. V.L. Moruzzi, J.F. Janak, and K. Schwarz: Phys. Rev. B, 1988, 37, pp. 790–99.

    Article  ADS  Google Scholar 

  9. A. Qteish and R. Resta: Phys. Rev. B, 1988, 37, pp. 6983–990.

    Article  ADS  Google Scholar 

  10. G. Ceder, M. Asta, W.C. Carter, M. Sluiter, M.E. Mann, M. Kraitchman, and D. de Fontaine: Phys. Rev. B, 1990, 41, pp. 8698–9701.

    Article  ADS  Google Scholar 

  11. D. Vanderbilt: Phys. Rev. B, 1990, 41, pp. 7892–895.

    Article  ADS  Google Scholar 

  12. S. de Gironcoli and P. Giannozzi: Phys. Rev. Lett., 1991, 66, pp. 2116–119.

    Article  ADS  Google Scholar 

  13. F. Ducastelle: Order and Phase Stability in Alloys, Elsevier Science, New York, 1991.

    Google Scholar 

  14. L.G. Ferreira, S.-H. Wei, and A. Zunger: Int. J. Supercomput., 1991, 5, pp. 34–55.

    Article  ADS  Google Scholar 

  15. A.S. Goldberger: A Course in Econometrics, Harvard University Press, Cambridge, MA, 1991.

    Google Scholar 

  16. D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger: Phys. Rev. B, 1992, 46, pp. 12587–2605.

    Article  ADS  Google Scholar 

  17. M. Asta, D. de Fontaine, and M. van Schilfgaarde: J. Mater. Res., 1993, 8, pp. 2554–568.

    Article  ADS  Google Scholar 

  18. G. Ceder: Comp. Mater. Sci., 1993, 1, pp. 144–49.

    Article  Google Scholar 

  19. G. Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda: Phys. Rev. B, 1994, 49, pp. 1–7.

    Article  ADS  Google Scholar 

  20. D. de Fontaine: Solid State Phys., 1994, 47, pp. 33–176.

    Article  Google Scholar 

  21. G.D. Garbulsky and G. Ceder: Phys. Rev. B, 1994, 49, pp. 6327–330.

    Article  ADS  Google Scholar 

  22. A. Zunger: First Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds, in NATO ASI on Statics and Dynamics of Alloy Phase Transformation, Vol. 319, P.E. Turchi and A. Gonis, ed., Plenum Press, New York, 1994, pp. 361–93.

    Google Scholar 

  23. G.D. Garbulksy and G. Ceder: Phys. Rev. B, 1995, 51, pp. 67–72.

    Article  ADS  Google Scholar 

  24. C. Wolverton and A. Zunger: Phys. Rev. B, 1995, 52, pp. 8813–828.

    Article  ADS  Google Scholar 

  25. G.D. Garbulsky and G. Ceder: Phys. Rev. B, 1996, 53, pp. 8993–9001.

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Furthmüller: Comp. Mater. Sci., 1996, 6, pp. 15–50.

    Article  Google Scholar 

  27. G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, 54, pp. 11169–1186.

    Article  ADS  Google Scholar 

  28. R. McCormack and D. de Fontaine: Phys. Rev. B, 1996, 54, pp. 9746–755.

    Article  ADS  Google Scholar 

  29. P.D. Tepesch, A.F. Kohan, G.D. Garbulsky, and G. Ceder, C. Coley, H.T. Stokes, L.L. Boyer, M.J. Mehl, B.P. Burton, R.J. Cho, and J. Joannopoulos: J. Am. Ceram., 1996, 49, pp. 2033–40.

    Article  Google Scholar 

  30. A.F. Kohan, P.D. Tepesch, G. Ceder, and C. Wolverton: Comp. Mater. Sci., 1998, 9, pp. 389–96.

    Article  Google Scholar 

  31. V. Ozoliņš, C. Wolverton, and A. Zunger: Phys. Rev. B, 1998, 57, pp. 6427–443.

    Article  ADS  Google Scholar 

  32. V. Ozoliņš, C. Wolverton, and A. Zunger: Phys. Rev. B, 1998, 58, pp. R5897-R5900.

    Article  ADS  Google Scholar 

  33. V. Ozoliņš, C. Wolverton, and Alex Zunger: Phys. Rev. B, 1998, 57, pp. 4816–828.

    Article  ADS  Google Scholar 

  34. A. van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner: Phys. Rev. B, 1998, 58, pp. 2975–987.

    Article  ADS  Google Scholar 

  35. A. van de Walle, G. Ceder, and U.V. Waghmare: Phys. Rev. Lett., 1998, 80, pp. 4911–914.

    Article  ADS  Google Scholar 

  36. C. Wolverton, V. Ozoliņš, and A. Zunger: Phys. Rev. B, 1998, 57, pp. 4332–348.

    Article  ADS  Google Scholar 

  37. A. van de Walle and G. Ceder: Phys. Rev. B, 2000, 61, pp. 5972–978.

    Article  ADS  Google Scholar 

  38. A. van de Walle: The MIT Ab initio Phase Stability (MAPS) Code, http://www.mit.edu/navdw/maps.

  39. A. van de Walle and M. Asta: Model. Simul. Mater. Sci. 2002, 10, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Walle, A., Ceder, G. Automating first-principles phase diagram calculations. JPE 23, 348 (2002). https://doi.org/10.1361/105497102770331596

Download citation

  • Received:

  • DOI: https://doi.org/10.1361/105497102770331596

Keywords

Navigation