Skip to main content
Log in

Retinoic acid, bromodeoxyuridine, and the Δ205 mutant polyoma virus middle T antigen regulate expression levels of a common ensemble of proteins associated with early stages of inducing HL-60 leukemic cell differentiation

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Sumamry

Retinoic acid (RA), bromodeoxyuridine (BrdU), and the Δ205 mutant polyoma middle T antigen affect the expression of a common ensemble of proteins in HL-60 human myeloblastic leukemia cells. Each of these agents is known to be able to prime HL-60 cells and accelerate subsequently induced myeloid or monocytic differentiation and G0 cell cycle arrest, suggesting that they have equal or identical cellular targets relevent to the early stages of inducing cell differentiation and G0 arrest. As a test of this possibility, a survey of protein expression changes induced by RA, BrdU, or Δ205 transfection was performed. Retinoic acid induced numerous changes within h. Bromodeoxyuridine caused larger numbers of changes, whereas Δ205 caused a more limited number. Among the hundreds of affected proteins detected, there were comparable numbers of up- or downregulated proteins. A small number changed between undetectable and detectable expression. The affected proteins were not restricted to a single functional class and included transcription factors, receptors, signaling molecules, cytoskeletal molecules, and effectors of various cellular processes such as deoxyribonucleic acid replication, transcription, and translation. The intersect of the sets of proteins affected by RA, BrdU, and Δ205 was identified to determine if these agents regulated a common subset of proteins. This ensemble contained the commonly upregulated proteins AF6, ABP-280, ENC-1, ESE 1, MAP2B, NTF2, casein kinase, IRF1, SRPK2, Rb2, RhoGDI, P47phox, CD45, PKR, and SIIIp15. The commonly downregulated proteins were SHC, katanin, flotillin-2/ESA, EB 1, p43/EMAPIIprecursor, Jabl, FNK. The composition of the ensemble suggested three apparent themes for cellular processes that were affected early. The themes reflected the ultimate fate of the treated precursor cells as a mature myeloid cell, namely a cell whose hallmarks are (1) motility to migrate to a target and phagocytize it, (2) inducible oxidative metabolism to reduce the target with superoxide from a respiratory burst, and (3) biosynthetic slow down consistent with conversion from cell proliferation to quiescence. Interestingly, RA appears to induce aspects of an interferon-like response of potential significance as part of a biosynthetic slow down leading to cell cycle arrest. In conclusion, three biologically disparate ways to prime cells to differentiate were used to filter out a small ensemble of commonly regulated proteins that group as either microtubule associated, oxidative metabolism machinery, or effectors of cellular responses to interferon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, A.; Bray, D.; Lewis, J.; Raff, M.; Watson, J. D. Molecular biology of the cell. 3rd ed. New York: Garland Publishing; 1994;402p.

    Google Scholar 

  • Aoyama, M.; Grabowski, D. R.; Isaacs, R. J., et al. Altered expression and activity of topoisomerases during all trans retinoic acid induced differentiation of HL-60 cells. Blood 92:2863–2870; 1998.

    PubMed  CAS  Google Scholar 

  • Arany, I.; Whitehead, W. E.; Grattendick, K. J.; Ember, I. A.; Tyring, S. K. Suppression of growth by all-trans retinoic acid requires prolonged induction of interferon regulatory factor 1 in cervical squamous carcinoma (SiHa) cells. Clin. Diagn. Lab. Immunol. 9:1102–1106; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Arsura, M.; Luchetti, M.; Erba, E.; Golay, J.; Rambaldi, A.; Introna, M. Dissociation between P-93B-myb and P-75c-myb expression during the proliferation and differentiation of human myeloid cell lines. Blood 83:1778–1790; 1994.

    PubMed  CAS  Google Scholar 

  • Baez, A.; Torres, K.; Tan, E. M.; Pommier, Y.; Casciano, C. A. Expression of proliferation-associated nuclear autoantigens, p330-d-CENP-F and PCNA, in differentiation and in drug-induced growth inhibition using two parameter flow cytometry. Cell Prolif. 20:183–196; 1996.

    Article  Google Scholar 

  • Battle, T. E.; Levine, R. A.; Yen, A. Retinoic acid-induced blr1 expression promotes ERK2 activation and cell differentiation in HL-60 cells. Exp. Cell Res. 254:287–298; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Battle, T. E.; Roberson, M. S.; Zhang, T.; Varvayanis, S.; Yen, A. Retinoic acid-induced blr1 expression requires RARα, RXR, and MAPK activation and uses ERK2 but not JNK/ SAPK to accelerate cell differentiation. Eur. J. Cell Biol. 80:59–67; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Blomhoff, R.; Green, M. H.; Berg, T.; Norum, K. Transport and storage of vitamin A. Science 250:399–403; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bollag, W. Retinoids and interferon: a new promising combination? Br. J. Haematol. 79:87–91; 1991.

    PubMed  CAS  Google Scholar 

  • Brackman, D.; Lund-Johansen, F.; Aarskog, D. Expression of cell surface antigens during the differenitation of HL-60 cells induced by 1,25-dihydroxy vitamin D-3, retinoic acid and DMSO. Leuk. Res. 19:57–64; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Breitman, T. R.; Selonick, S. E.; Collins, S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc. Natl. Acad. Sci. USA 77:2936–2940; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, S. C., III; Kazmer, S.; Levin, A. A.; Yen, A. Myeloid differentiation and RB phosphorylation changes in HL-60 cells induced by RAR-and RXR-selective retinoic acid analogs. Blood 87:227–237; 1996.

    PubMed  CAS  Google Scholar 

  • Brown, G.; Drayson, M. T.; Durham, J., et al. HL60 cells halted in G1 or S phase differentiate normally. Exp. Cell Res. 281:28–38; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Buerger, C.; Wick, M.; Mueller, R. Lineage-specific regulation of cell cycle gene expression in differentiating myeloid cells. J. Cell Sci. 107:2047–2054; 1994.

    CAS  Google Scholar 

  • Burn, T. C.; Petrovick, M. S.; Hohaus, S.; Rollins, B. J.; Tenen, D. G. Monocytic chemoattractant protein-1 gene is expressed in activated neutrophils and retinoic acid-induced human myeloid cell lines. Blood 84:2776–2783; 1994.

    PubMed  CAS  Google Scholar 

  • Collins, S. J.; Gallo, R. C.; Gallagher, R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270:347–349; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Conddorelli, G. L.; Testa, U.; Valtieri, M., et al. Modulation of retinoblastoma gene in normal adult hematopoiesis: peak expression and functional role in advanced erythroid differentiation. Proc. Natl. Acad. Sci. 92:4808–4812; 1995.

    Article  Google Scholar 

  • Dipietrantonio, A.; Hsieh, T. C.; Wu, J. M. Differential effects of retinoic acid (RAP and N-(4-hydroxyphenyl) retinamide (4-HPR) on cell growth, induction of differentiation, and changes in p34-cdc2, Bcl-2, and actin expression in the human promyelocytic HL-60 leukemic cells. Biochem. Biophys. Res. Commun. 224:837–842; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Freidman, A.; Sklan, D. Vitamin A and immunity. In: Klurfeld, D. M., ed. Human nutrition—a comprehensive treatise, vol. 8. Plenum Press, New York, NY, 1993;197–216.

    Google Scholar 

  • Gianni, M.; Terao, M.; Fortino, I.; LiCalzi, M.; Viggiano, V.; Barbui, T.; Rambaldi, A.; Garattini, E. Stal1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 89:1001–1012; 1997.

    PubMed  CAS  Google Scholar 

  • Grande, A.; Manfredini, R.; Tagliafico, E., et al. All-trans-retinoic acid induces simultaneously granulocytic differentiation and expression of inflammatory cytokines in HL-60 cells. Exp. Hematol. 23:117–127; 1995.

    PubMed  CAS  Google Scholar 

  • Gudas, L. J. Retinoids and vertebrate development. J. Biol. Chem. 22:15399–15402; 1994.

    Google Scholar 

  • Herwig, S.; Su, Q.; Zhang, W.; Ma, Y.; Tempst, P. Distinct tempral patterns of defensin mRNA regulation during drug-induced differentiation of human myeloid leukemia cells. Blood 87:350–364; 1996.

    PubMed  CAS  Google Scholar 

  • Holman, P.; Lu, J.; Jasty, R.; Suchard, S.; Mansfield, P.; Andrews, D. W.; Leber, B.; Castle, V. P. Bax is induced following retinoic acid treatment but cell survival depends on BCL-2 expression. 37th Annual Meeting of the American Society of Hematology, Seattle, WA, USA, December 1–5, 1995. Blood 86 (10 Suppl. 1):36A; 1995.

    Google Scholar 

  • Hong, H. Y.; Varvayanis, S.; Yen, A. Retinoic acid causes MEK-dependent RAF phosphorylation through RARα plus RXR activation in HL-60 cells. Differentiation 68:55–66; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hoyos, B.; Imam, A.; Chua, R.; Swenson, C.; Xia, T.-G.; Levi, E.; Noy, N.; Hammerling, U. The cysteine-rich regions of the regulary domains of Raf and protein kinase C as retinoid receptors. J. Exp. Med. 192:835–843; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, H. C.; Yang, K.; Kharbanda, S.; Clinton, S.; Datta, R.; Stone, R. M. Alltrans retinoic acid induces monocyte growth factor receptor c-FMS gene expression in HL-60 leukemia cells. Leukemia 7:458–462; 1993.

    PubMed  CAS  Google Scholar 

  • Iiri, T.; Homma, Y.; Ohaka, Y.; Robishaw, J. D.; Katada, T.; Bourne, H. R. Potentiation of G-i-mediated phospholipase C activation by retinoic acid in HL-60 cells: possible role of G-gamma-2. J. Biol. Chem. 270:5901–5908; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kamei, Y.; Xu, L.; Heinzel, T., et al. A CPB integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, K.; Katagiri, T.; Koyama, Y.; Morikawa, M.; Yamaoto, T.; Yoshida, T. Expression of SRC family genes during monocytic differentiation of HL-60 cells. J. Immunol. 146:701–707; 1991.

    PubMed  CAS  Google Scholar 

  • Katagiri, K.; Kinashi, T.; Irie, S. K.; Katagiri, T. Differential regulation of leukocyte function-associated antigen-1-intercellular adhesion molecules-1-dependent adhesion and aggregation in HL-60 cells. Blood 87:4276–4285; 1996.

    PubMed  CAS  Google Scholar 

  • Kim, K. Y.; Kweon, K. R.; Lee, M. S.; Kwak, S. T.; Kim, K. E.; Hwang, B. D.; Lim, K. Reduced level of octamer binding transcription factor (Oct-1) is correlated with H2 histone gene repression during differentiation of HL-60 cells by all-trans retinoic acid. Biochem. Biophys. Res. Commun. 213:616–624; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, L. G.; Pettersson, M.; Oberg, F.; Nilsson, K.; Luescher, B. Expression of mad, mxil, max and c-myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-myc. Oncogene 9:1247–1252; 1994.

    PubMed  CAS  Google Scholar 

  • Lian, Z.; Wang, L.; Yamaga, S., et al. Genomic and proteomic analysis of the myeloid differenitation program. Blood 98:513–524; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J.; Sartorelli, A. C. Stimulation by interferon of the differentiation of human promyelocytic leukemia HL-60 cells. J. Interferon Res. 7:379–388; 1987.

    PubMed  CAS  Google Scholar 

  • Linnekin, D.; Howard, O. M. Z.; Park, L.; Farrar, W.; Ferris, D.; Longo, D. L Hck expression correlates with granulocyte-macrophage colonystimulating factor-induced proliferation in Hl-60 cells. Blood 84:94–103; 1994.

    PubMed  CAS  Google Scholar 

  • Liu, T.-X.; Zhang, J.-W.; Tao, J., et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 96:1496–1504; 2000.

    PubMed  CAS  Google Scholar 

  • Mailhammer, R.; Szöts, H.; Bönisch, J.; Dörmer, P. Downregulation of messenger RNA levels for ribosomal proteins in differentiating HL-60 cells. Exp. Cell Res. 200:145–148; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J.; Borgmeyer, U.; Heyman, R. A.; Zhou, J. Y.; Ong, E. S.; Oro, A. E.; Kakizuka, A.; Evans, R. M. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev. 6:329–344; 1992.

    PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J.; Evans, R. M. The RXR heterodimers, and orphan receptors. Cell 83:841–850; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsford, D. J.; Kazukiko, U.; Evans, R. M. The retinoid receptors. In: Sporn, M. B.; Roberts, A.; Goodman, D. S., ed. The retinoids. 2nd ed., chap 7. New York: Raven Press; 1994:319–349.

    Google Scholar 

  • Mangelsdorf, D. J.; Ong, E. S.; Dyck, J. A.; Evans, R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Matikainen, S.; Ronni, T.; Hurme, M.; Pine, R.; Julkunen, I. Retinoic acid activates interferon regulatory factor-1 gene expression in myeloid cells. Blood 88:114–123; 1996.

    PubMed  CAS  Google Scholar 

  • Nilsson, A.; Nygard, O. Phosphorylation of eukaryotic elongation factor 2 i differentiating and proliferating HL-60 cells. Biochim. Biophys. Acta 1268:263–268; 1995.

    Article  PubMed  Google Scholar 

  • Ohoka, Y.; Kontani, K.; Iiri, T.; Nishina, H.; Katada, T. Involvement of pertussis toxin-sensitive mechanism in retinoic acid-induced differentiation of human leukemic HL-60 cells. J. Biochem. 117:190–196; 1995.

    PubMed  CAS  Google Scholar 

  • Omay, S. B.; Nishikawa, M.; Morita, K., et al. Decreased expression of protein phosphatase type 2A in HL-60 variant (HL-60RA-4) cells resistant to induction of cell differentiation by all-trans retinoic acid. Exp. Hematol. 23:244–251; 1995.

    PubMed  CAS  Google Scholar 

  • Paggi, M. G.; Giordano, A. Who is the boss in the retinoblastoma family? The point of view of Rb2/p130, the little brother. Cancer Res. 61:4651–4654; 2001.

    PubMed  CAS  Google Scholar 

  • Pelicana, L.; Li, F.; Schindler, C.; Chelbi-Alix, M. K. Retinoic acid enhances the expression of interferon-induced proteins: evidence for multiple mechanisms of action. Oncogene 15:2349–2359; 1997.

    Article  Google Scholar 

  • Platko, J. D.; Forbes, M. E.; Varvayanis, S.; Williams, M. N.; Brooks, S. C., III; Cherington, V.; Yen, A. Polyoma middle T antigen in HL-60 cells accelerates hematopoietic myeloid and monocytic cell differentiation. Exp. Cell Res. 238:42–50; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schräder, M.; Bendik, I.; Becker-André, M.; Carlberg, C. Interaction between retinoic acid and vitamin D signaling pathways. J. Biol. Chem. 268:17830–17836; 1993.

    PubMed  Google Scholar 

  • Sklan, D. Vitamin A in human nutrition. Prog. Food Nutr. Sci. 11:39–55; 1987.

    PubMed  CAS  Google Scholar 

  • Taipale, J.; Matikainen, S.; Hurme, M.; Keski-Oja, J. Induction of transforming growth factor beta-1 and its receptor expression during myeloid leukemia cell differentiation. Cell Growth Differ. 5:1309–1319; 1994.

    PubMed  CAS  Google Scholar 

  • Tkatch, L. S.; Rubin, K. A.; Ziegler, S. F.; Tweardy, D. J. Modulation of human G-CSF receptor mRNA and protein in normal and leukemic myeloid cells by G-CSF and retinoic acid. J. Leukocyte Biol. 57:964–971; 1995.

    PubMed  CAS  Google Scholar 

  • Wang, X.; Studzinski, G. P. Activation of extracellular signal-regulated kinases (ERKs) defines the first phase of 1,25-dihydroxyvitamin D3-induced differentiation of HL-60 cells. J. Cell. Biochem. 80:471–482; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Wick, M.; Burger, C.; Brusselbach, S.; Lucibello, F. C.; Muller, R. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation and senescence. J. Biol. Chem. 269:18953–18960; 1994.

    PubMed  CAS  Google Scholar 

  • Yamada, N.; Makino, Y.; Clark, R. A., et al. Human inostiol 1,4,5-trisphosphate type-1 receptor, InsP-3R1: structure, function, regulation of expression and chromosomal localization. Biochem. J. 302:781–790; 1994.

    PubMed  CAS  Google Scholar 

  • Yen, A. Control of HL-60 myeloid differentiation: evidence of uncoupled growth and differentiation control, S-phase specificity and two-step regulation. Exp. Cell Res. 156:198–212; 1984.

    Article  Google Scholar 

  • Yen, A. HL-60 cells as a model of growth control and differnetiation: the significance of variant cells. Hematol. Rev. 4:5–46; 1990.

    Google Scholar 

  • Yen, A.; Brown, D.; Fishbaugh, J. Precommitment states induced during HL-60 myeloid differentiation: possible similarities of retinoic acid and DMSO induced early events. Exp. Cell Res. 173:80–84; 1987a.

    Article  PubMed  CAS  Google Scholar 

  • Yen, A.; Chandler, S.; Forbes, M. E.; Fung, Y.-K.; T’Ang, A.; Pearson, R. Coupled down-regulation of the RB retinoblastoma and c-myc genes antecedes cell differentiation: possible role of RB as a “status quo” gene. Eur. J. Cell Biol. 57:210–221; 1992.

    PubMed  CAS  Google Scholar 

  • Yen, A.; Cherington, V.; Schaffhausen, B.; Marks, K.; Varvayanis, S. Transformation defective polyoma middle T antigen mutants defective in PLCγ, PI-3 or SRC kinase activation enhance ERK2 activation and promote retinoic acid-induced cell differentiation like wild type middle T. Exp. Cell Res. 248:538–551; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yen, A.; Forbes, M. E. C-myc down regulation and precommitment in HL-60 cells due to bromodeoxyuridine. Cancer Res. 50:1411–1420; 1990.

    PubMed  CAS  Google Scholar 

  • Yen, A.; Forbes, M.; deGala, G.; Fishbaugh, J. Control of HL-60 cell differentiation lineage specificity: a late event occurring after precommitment. Cancer Res. 47:129–134; 1987b.

    PubMed  CAS  Google Scholar 

  • Yen, A.; Forbes, M. E.; Varvayanis, S.; Tykocinski, M. L.; Groger, R. K.; Platko, J. D. C-FMS dependent HL-60 cell differentiation and regulation of RB gene expression. J. Cell. Physiol. 157:379–391; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Yen, A.; Reece, S. L.; Albright, K. L. Dependence of HL-60 myeloid cell differentiation on continuous and split retinoic acid exposures: precommitment memory associated with altered nuclear structure. J. Cell Physiol. 118:227–286; 1984.

    Article  Google Scholar 

  • Yen, A.; Roberson, M. S.; Varvayanis, S.; Lee, A. T. Retinoic acid induces mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res. 58:3163–3172; 1998.

    PubMed  CAS  Google Scholar 

  • Yen, A.; Sturgill, R.; Varvayanis, S. Retinoic acid increases amount of poosphorylated RAF: ectopic expression of cFMS reveals that retinoic acid induced differentiation is more strongly dependent on ERK2 signaling that induced G0 arrest is. In Vitro Cell. Dev. Biol. 36:249–255; 2000.

    Article  CAS  Google Scholar 

  • Yen, A.; Williams, M.; Platko, J. D.; Der, C.; Hisaka, M. Expression of activated RAF accelerates cell differentiation and RB protein down regulation but not hypophosphorylation. Eur. J. Cell Biol. 65:103–113; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, A., Lin, D.M., Lamikin, T.J. et al. Retinoic acid, bromodeoxyuridine, and the Δ205 mutant polyoma virus middle T antigen regulate expression levels of a common ensemble of proteins associated with early stages of inducing HL-60 leukemic cell differentiation. In Vitro Cell.Dev.Biol.-Animal 40, 216–241 (2004). https://doi.org/10.1290/1543-706X(2004)40<216:RABATM>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2004)40<216:RABATM>2.0.CO;2

Key words

Navigation