Skip to main content

Advertisement

Log in

Human embryonic stem cell (hES) colonies display a higher degree of spontaneous differentiation when passaged at lower densities

  • Reports
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Human embryonic stem (hES) cells require cooperative interactions with each other for their survival. Previously, the size of hES cell clumps has been reported to be an important factor in determining their viability during routine serial passage. However, the effects of seeding density of the hES cell clumps per se have not yet been investigated. Therefore, this study attempted to compare the level of spontaneous differentiation of hES colonies passaged at two different split ratios (1∶3 and 1∶8) of a single confluent well of a six-well dish. After 7 d of in vitro culture following serial passage, hES colonies were assigned into three grades according to their degree of spontaneous differentiation: (1) Grade A, which was completely or mostly undifferentiated; (2) grade B, which was partially differentiated; and (3) grade C, which was mostly differentiated. Assessment of the degree of spontaneous differentiation was based on morphological observations under bright-field and phase-contrast microscopy, as well as on immunocytochemical staining for the pluripotency markers SSEA-3 and TRA-1-81. We observed that, at a split ratio of 1∶3, the percentages of grade A, B, and C colonies were 89.5, 8.8, and 1.7%, respectively. This was significantly different from the corresponding values of 52.7, 31.3, and 16.0%, respectively, obtained at a split ratio of 1∶8. Hence, our results indicated that a lower passage density led to a higher degree of spontaneous differentiation of hES colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit, M.; Carpenter, M. K.; Inokuma, M. S.; Chiu, C. P.; Harris, C. P.; Waknitz, M. A.; Itskovitz-Eldor, J.; Thomson, J. A. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227:271–278; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M.; Margulets, V.; Segev, H.; Shariki, K.; Laevsky, I.; Coleman, R.; Itskovitz-Eldor, J. Human feeder layers for human embryonic stem cells. Biol. Reprod. 68:2150–2156; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Amit, M.; Shariki, C.; Margulets, V.; Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70:837–845; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D.; Lewis, R. L.; Kaufman, D. S. Mouse and human embryonic stem cell models of hematopoiesis: past, present, and future. Biotechniques 35:1253–1261; 2003.

    PubMed  CAS  Google Scholar 

  • Cowan, C. A.; Klimanskaya, I.; McMahon, J.; Atienza, J.; Witmyer, J.; Zucker, J. P.; Wang, S.; Morton, C. C.; McMahon, A. P.; Powers, D.; Melton, D. A. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350:1353–1356; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, L. M.; Kubalak, S. W.; Eisenberg, C. A. Stem cells and the formation of the myocardium in the vertebrate embryo. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 276:2–12; 2004.

    Article  PubMed  Google Scholar 

  • Gerecht-Nir, S.; Itskovitz-Eldor J. Cell therapy using human embryonic stem cells. Transpl. Immunol. 12:203–209; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Gribaldo, L.; Alison, M.; Andrews, P. W.; Bremer, S.; Donovan, P. J.; Knaan-Shanzer, S.; Mertelsmann, R.; Spielmann, H.; Testa, N. G.; Triffitt, J. T.; Zipori, D.; de Wynter E. Meeting summary: European workshop on stem cells, European Centre for the Validation of Biomedical Testing Methods, Institute for Health and Consumer Protection, Joint Research Centre, Ispra, Italy, November 21–23, 2001. Exp. Hematol. 30:628–633; 2002.

    Article  PubMed  Google Scholar 

  • Martin, M. J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11:228–232; 2005.

    Article  PubMed  CAS  Google Scholar 

  • NIH backgrounder on stem cells. Date accessed: 10 April 2005. www.nih.gov/ news/backgrounders/stemcellbackgrounder.htm

  • Reubinoff, B. E.; Pera, M. F.; Fong, C. Y.; Trounson, A.; Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18:399–404; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Richards, M.; Fong, C. Y.; Chan, W. K.; Wong, P. C.; Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20:933–936; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Richards, M.; Fong, C. Y.; Tan, S.; Chan, W. K.; Bongso, A. An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789; 2004a.

    Article  PubMed  Google Scholar 

  • Richards, M.; Tan, S. P.; Tan, J. H.; Chan, W. K.; Bongso, A. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22:51–64; 2004b.

    Article  PubMed  CAS  Google Scholar 

  • Rohwedel, J.; Guan, K.; Hegert, C.; Wobus, A. M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity, and embryotoxicity studies: present state and future prospects. Toxicol. In Vitro 15:741–753; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rosler, E. S.; Fisk, G. J.; Ares, X.; Irving, J.; Miura, T.; Rao, M. S.; Carpenter, M. K. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229:259–274; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sathananthan, H.; Pera, M.; Trounson, A. The fine structure of human embryonic stem cells. Reprod. Biomed. Online 4:56–61; 2002.

    Article  PubMed  Google Scholar 

  • Stojkovic, P.; Lako, M.; Przyborski, S.; Stewart, R.; Armstrong, L.; Evans, J.; Zhang, X.; Stojkovic, M. Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells 23(7):895–902; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.; Zhang, H.; Zhao, Y.; Li, J.; Cai, J.; Wang, P.; Meng, S.; Feng, J.; Miao, C.; Ding, M.; Li, D.; Deng, H. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem. Biophys. Res. Commun. 330:934–942; 2005.

    Article  PubMed  CAS  Google Scholar 

  • WiCell Research Institute Inc. Introduction to human embryonic stem cell culture methods—part II (January 2003). Date accessed: 10 April 2005. http://www.wicell.org/forresearchers/index.jsp?catid=12&subcatid=20

  • Xu, C.; Inokuma, M. S.; Denham, J.; Golds, K.; Kundu, P.; Gold, J. D.; Carpenter, M. K. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19:971–974; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R. H.; Peck, R. M.; Li, D. S.; Feng, X.; Ludwig, T.; Thomson, J. A. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods. 2:185–190; 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon Chin Heng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, B.C., Liu, H., Rufaihah, A.J. et al. Human embryonic stem cell (hES) colonies display a higher degree of spontaneous differentiation when passaged at lower densities. In Vitro Cell.Dev.Biol.-Animal 42, 54–57 (2006). https://doi.org/10.1290/0510071.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0510071.1

Key words

Navigation