Skip to main content
Log in

Microvascular endothelial cells sustain preadipocyte viability under hypoxic conditions

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Obesity, soft tissue wound healing, adipose tissue engineering, lipomas, and other physiological and pathophysiological conditions necessitate a clear understanding of the interactions between adipocytes and endothelial cells. Adipogenesis and angiogenesis are intimately integrated, despite not being in direct apposition with one another. However, underlying mechanisms have not been elucidated. In this study, the interactions of preadipocytes (PAs) and microvascular endothelial cells are investigated under varying defined O2 conditions, using a coculture system. Results clearly demonstrate that endothelial cells release a soluble factor that sustains PAs viability under hypoxic conditions. Vascular endothelial cell growth factor is not the potential soluble factor (data not shown).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, S.; Ahmad, A.; Gerasimovskaya, E.; Stenmark, K. R.; Allen, C. B.; White, C. W. Hypoxia protects human lung microvascular endothelial and epithelial-like cells against oxygen toxicity: role of phosphatidylinositol 3-kinase. Am. J. Respir. Cell Mol. Biol. 28:179–187; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, S.; Toda, S.; Sakemi, T.; Sugihara, H. Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct. Funct. 28:55–60; 2003.

    Article  PubMed  Google Scholar 

  • Artwohl, M.; Roden, M.; Holzenbein, T.; Feudenthaler, A.; Waldhausl, W.; Baumgartner-Parzer, S. M. Modulation by leptin of proliferation and apoptosis in vascular endothelial cells. Int. J. Obes. 26:577–580; 2002.

    Article  CAS  Google Scholar 

  • Ballard, K. W. Functional characteristics of the microcirculation in white adipose tissue. Microvasc. Res. 16:1–18; 1977.

    Article  Google Scholar 

  • Baum, D.; Stern, M. P. Adipose hypocellularity in cyanotic congenital heart disease. Circulation 55:916–920; 1977.

    PubMed  CAS  Google Scholar 

  • Brogi, E.; Wu, T.; Namiki, A.; Isner, J. M. Indirect angigenic cytokines upregulate vegf and bfgf gene expression in vascular smooth muscle cells, whereas hypoxia upregulates vegf expression only. Circulation 90:649–652; 1994.

    PubMed  CAS  Google Scholar 

  • Carriere, A.; Carmona, M. C.; Fernandez, Y.; Rigoulet, M.; Wenger, R. H.; Penicaud, L.; Casteilla, L. Mitochondrial-reactive oxygen species control the transcription factor chop-10/gadd153 and adipocyte differentiation. J. Biol. Chem. 279:40462–40469; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Castellot, J. J., Jr.; Karnovsky, M. J.; Spiegelman, B. M. Potent stimulation of vascular endothelial cell growth by differentiated 3t3 adipocytes. Proc. Natl. Acad. Sci. USA 77:6007–6011; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Castellot, J. J., Jr.; Karnovsky, M. J.; Spiegelman, B. M. Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3t3 adipocytes. Proc. Natl. Acad. Sci. USA 79:5597–5601; 1982.

    Article  PubMed  Google Scholar 

  • Crandall, D. L.; Hausman, G. J.; Kral, J. G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4:211–232; 1997.

    PubMed  CAS  Google Scholar 

  • Dore-Duffy, P.; Balabanov, R.; Beaumont, T.; Hritz, M. A.; Harik, S. I.; LaManna, J. C. Endothelial activation following prolonged hypobaric hypoxia. Microvasc. Res. 57:75–85; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Farber, H. W.; Rounds, S. Effect of long-term hypoxia on cultured aortic and pulmonary arterial endothelial cells. Exp. Cell Res. 191:27–36; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Frye, C.; Patrick, C. W., Jr. Isolation and culture of rat microvascular endothelial cells. In Vitro Cell. Dev. Biol. 38:208–212; 2002.

    Article  Google Scholar 

  • Fukummura, D.; Ushiyama, A.; Duda, D. G., et al. Paracrine regulation of angiogencsis and adipocyte differentiation during in vivo adipogenesis. Circ. Res. 93:e88-e97; 2003.

    Article  CAS  Google Scholar 

  • Goldsmith, H. S.; Griffith, A. L.; Kupferman, A.; Catismpoolas, N. Lipid angiogenic factor from omentum. JAMA 252:2034–2036; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, G. J.; Richardson, R. L. Adipose tissue angiogenesis. J. Anim. Sci 82:925–934; 2004.

    PubMed  CAS  Google Scholar 

  • Hutley, L. J.; Herington, A. C.; Shurety, W.; Cheung, C.; Vesey, D. A.; Cameron, D. P.; Prins, J. B. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 281:E1037-E1044; 2001.

    PubMed  CAS  Google Scholar 

  • Iizuka, M.; Yamauchi, M.; Ando, K.; Hori, N.; Furusawa, Y.; Itsukaichi, H.; Fukutsu, K.; Moriya, H. Quantitative rt-pcr assay detecting the transcriptional induction of vascular endothelial growth factor under hypoxia. Biochem. Biophys. Res. Comm. 205:1474–1480; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Knutson, V. P. The release of lipoprotein lipase from 3t3−11 adipocytes is regulated by microvessel endothelial cells in an insulin-dependent manner. Endocrinology 141:609–701; 2000.

    Article  Google Scholar 

  • Levy, A. P.; Levy, N. S.; Goldberg, M. A. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 271:2746–2753; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.; Cox, S.; Morita, T.; Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ. Res. 77:638–643; 1995.

    PubMed  CAS  Google Scholar 

  • Lolmede, K.; de Saint Front, V. D.; Galitzky, J.; Lafontan, M.; Bouloumie, A. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3t3−f442a adipocytes. Int. J. Obes 27:1187–1195; 2003.

    Article  CAS  Google Scholar 

  • Lui, Y.; Cox, S. R.; Morita, T.; Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ. Res. 77:638–643; 1995.

    Google Scholar 

  • Macfarlane, C. M. In vitro influence of sublethal hypoxia on differentiation on the 3t3−II preadipose cell line and its physiological implications. Life Sci. 60:1923–1931; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Neels, J.; Thinnes, T.; Loskutoff, D. Angiogenesis in an in vivo model of adipose tissue development FASEB express article 10.1096/fj.03−1101fje: 1-19; 2004.

  • Ouchi, N.; Kihara, S.; Arita, Y., et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476; 1999.

    PubMed  CAS  Google Scholar 

  • Ozdemir, O. G., et al. Reconstruction of ureteral defects with a tubular skin graft secondarily prefabricated using omentum as a carrier: an experimental study. Urology 50:625–627; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. A.; Semenza, G. L.; Stoler, M. H.; Johns, R. A. Hypoxia induces type ii nos gene expression in pulmonary artery endothelial cells via hif-1. Am. J. Physiol. 274:L212-L219; 1998.

    PubMed  CAS  Google Scholar 

  • Patrick, C. W., Jr. Breast tissue engineering. Annu. Rev. Biomed. Eng. 6:109–130; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, C. W., Jr.; Chauvin, P. B.; Reece, G. P. Preadipocyte seeded plga scaffolds for adipose tissue engineering. Tissue Eng. 5:139–151; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, C. W., Jr.; Zheng, B.; Johnston, C.; Reece, G. P. Long-term implantation of preadipocyte seeded plga scaffolds. Tissue Eng. 8:283–293; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Salacinski, H. J.; Punshon, G.; Krijgsman, B.; Hamilton, G.; Seifalian, A. M. A hybrid compliant vascular graft seeded with microvascular endothelial cells extracted from human omentum. Artif. Organs 12:974–982; 2001.

    Article  Google Scholar 

  • Shreeniwas, R., et al. Hypoxia-mediated induction of endothelial cell interleukin-1α. J. Clin. Invest. 90:2333–2339; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, Y.; Harii, K.; Yamada, A.; Hirabayashi, S.; Sakurai, A.; Sasaki, T. Reconstruction of skull defects with vascularized omentum transfer and split calvarial bone graft: two case reports. J. Reconstr. Microsurg. 14:101–108; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M.; Mizuta, K.; Koba, F.; Ohira, Y.; Kobayashi, T.; Honda, Y. Effects of exposure to hypobaric-hypoxia on body weight, muscular and hematological characteristics, and work performance in rats. Jpn. J. Physiol. 47:51–57; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Toda, R.; Yuda, T.; Watanabe, S.; Takenaka, K.; Kaieda, M.; Koyanagi, H.; Toyohira, H.; Taira, A. Pedicle transposition of the greater omentum for sternal osteomyelitis and mediastinitis after cardiac operation. J. Cardiovasc. Surg. 39:359–360; 1998.

    CAS  Google Scholar 

  • Varzanch, F. E.; Shillabeer, G.; Wong, K. L.; Lau, D. C. W. Extracellular matrix components secreted by microvascular endothelial cells stimulate preadipocyte differentiation in vitro. Metabolism 43:906–921; 1994.

    Article  Google Scholar 

  • Walton, R. L.; Beahm, E. K.; Wu, L. De novo adipose formation in a vascularized engineered construct. Microsurgery 24:378–384; 2004.

    Article  PubMed  Google Scholar 

  • Wu, P.; Yonekura, H.; Li, H.; Nozaki, I.; Tomono, Y.; Naito, I.; Ninomiya, Y.; Yamamoto, H. Hypoxia down-regulates endostatin production by human microvascular endothelial cells and pericytes. Biochem. Biophys. Res. Comm. 288:1149–1154; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S. F.; Ogawa, S.; Stern, D. M.; Pinsky, D. J. Hypoxia-induced modulation of endothelial cell properties: regulation of barrier function and expression of interleukin-6. Kidney Int. 51:419–425; 1997.

    PubMed  CAS  Google Scholar 

  • Yun, Z.; Maecker, H. L.; Johnson, R. S.; Giaccia, A. J. Inhibition of ppary2 gene expression by the hif-1-regulated gene dec1/stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell. 2:331–341; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q. X.; Magovern, C. J.; Mack, C. A.; Budenbender, K. T.; Ko, W.; Rosengart, T. K. Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated agiogenesis. J. Surg. Res. 67:147–154; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Zünd, G.; Nelson, D. P.; Neufeld, E. J.; Dzus, A. L.; Bischoff, J.; Mayer, J. E.; Colgan, S. P. Hypoxia enhances stimulus-dependent induction of e-selectin on aortic endothelial cells. Proc. Natl. Acad. Sci. USA 93:7075–7080; 1996.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Patrick Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frye, C.A., Wu, X. & Patrick, C.W. Microvascular endothelial cells sustain preadipocyte viability under hypoxic conditions. In Vitro Cell.Dev.Biol.-Animal 41, 160–164 (2005). https://doi.org/10.1290/0502015.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0502015.1

Key words

Navigation