Skip to main content

Advertisement

Log in

Tissue Factor Pathway Inhibitor Gene Polymorphism −33T → C Predicts Improved Disease-Free Survival in Colorectal Cancer

  • Colorectal Cancer
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Tissue factor pathway inhibitor (TFPI) is an anticoagulant with antimetastatic properties. The homozygous CC polymorphism of TFPI (−33T → C) is associated with higher TFPI levels and lower venous thromboembolism risk. This study was the first to evaluate the impact of this polymorphism on disease-free survival (DFS) in cancer patients after curative resection.

Methods

A prospectively maintained tumor bank with clinical data was used to identify patients who underwent curative surgery for colorectal cancer between 1994 and 2006. Germline DNA was extracted from formalin-fixed, paraffin-embedded normal colonic mucosa. Single nucleotide polymorphisms for TFPI (−33T → C), factor V Leiden (G1691A), and prothrombin (G20210A) were determined by polymerase chain reaction. Survival analysis was described using the Kaplan–Meier method. Multivariable regression analysis was performed using the Cox proportional hazard model.

Results

Of the 127 patients identified, the CC genotype was found in 11 %. Venous thromboembolism incidence was 18 % in the TT/TC (wild type/heterozygous) genotypes and 7 % in the CC genotype (p = 0.46). The CC genotype was associated with superior DFS (hazard ratio 0.34, 95 % confidence interval 0.14–0.84; p = 0.02) with 5-year DFS of 63 vs. 24 % for CC vs. TT/TC, respectively. In multivariate analysis, CC polymorphism (hazard ratio 0.28, p = 0.008) was independently associated with improved DFS. The prevalence of factor V Leiden (0.8 %) and prothrombin (1.6 %) polymorphisms was too low to detect interaction with TFPI polymorphism or DFS.

Conclusions

These findings indicate that the inherited anticoagulant homozygous −33T → C TFPI polymorphism may protect against colon cancer recurrence and suggests a mediating role for the coagulation system in cancer outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Auer RA, Scheer AS, McSparron JI, et al. Postoperative venous thromboembolism predicts survival in cancer patients. Ann Surg. 2012;255:963–70.

    Article  PubMed  Google Scholar 

  2. Sorenen HT, Mellemkjaer L, Olsen JH, Baron JA. Prognosis of cancers associated with venous thromboembolism. N Engl J Med. 2000;343:1846–50.

    Article  Google Scholar 

  3. Alcalay A, Wun T, Khatri V, et al. Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol. 2006;24:1112–8.

    Article  PubMed  Google Scholar 

  4. Kuderer NM, Ortel TL, Francis CW. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J Clin Oncol. 2009;27:4902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Franchini M, Montagnana M, Favaloro EJ, Lippi G. The bidirectional relationship of cancer and hemostasis and the potential role of anticoagulant therapy in moderating thrombosis and cancer spread. Semin Thromb Hemost. 2009;35:644–53.

    Article  CAS  PubMed  Google Scholar 

  6. Bruggemann LW, Versteeg HH, Niers TM, Reitsma PH, Spek CA. Experimental melanoma metastasis in lungs of mice with congenital coagulation disorders. J Cell Mol Med. 2008;12:2622–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kirstein JM, Graham KC, MacKenzie LT, et al. Effect of anti-fibrinolytic therapy on experimental melanoma metastasis. Clin Exp Metastasis. 2009;26:121–31.

    Article  CAS  PubMed  Google Scholar 

  8. Lazo-Langner A, Goss GD, Spaans JN, Rodger MA. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb Haemost. 2007;5:729–37.

    Article  CAS  PubMed  Google Scholar 

  9. Klerk CPW, Smorenburg SM, Otten HM, et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol. 2005;23:2130–5.

    Article  CAS  PubMed  Google Scholar 

  10. Seth R, Tai LH, Falls T, et al. Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann Surg. 2013;258:158–68.

    Article  PubMed  Google Scholar 

  11. Hejna M, Raderer M, Zielinski CC. Inhibition of metastases by anticoagulants. J Natl Cancer Inst. 1999;91:22–36.

    Article  CAS  PubMed  Google Scholar 

  12. Niers TM, Klerk CP, DiNisio M, et al. Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol. 2007;61:195–207.

    Article  CAS  PubMed  Google Scholar 

  13. Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol. 2009;27:4834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol. 2006;208:327–39.

    Article  CAS  PubMed  Google Scholar 

  15. Amirkhosravi A, Meyer T, Amaya M, et al. The role of tissue factor pathway inhibitor in tumor growth and metastasis. Semin Thromb Hemost. 2007;33:643–52.

    Article  CAS  PubMed  Google Scholar 

  16. Ahamed J, Belting M, Ruf W. Regulation of tissue factor-induced signaling by endogenous and recombinant tissue factor pathway inhibitor 1. Blood. 2005;105:2384–91.

    Article  CAS  PubMed  Google Scholar 

  17. Palumbo JS, Talmage KE, Massari JV, et al. Tumor cell–associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell–dependent and independent mechanisms. Blood. 2007;110:132–41.

    Article  Google Scholar 

  18. Williams L, Tucker TA, Koenig K, et al. Tissue factor pathway inhibitor attenuates the progression of malignant pleural mesothelioma in nude mice. Am J Respir Cell Mol Biol. 2012;46:173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amirkhosravi A, Meyer T, Chang JY, et al. Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb Haemost. 2002;87:930–6.

    CAS  PubMed  Google Scholar 

  20. Hoppensteadt DA, Walenga JM, Fasanella A, Jeske W, Fareed J. TFPI antigen levels in normal human volunteers after intravenous and subcutaneous administration of unfractionated heparin and a low molecular weight heparin. Thromb Res. 1995;77:175–85.

    Article  CAS  PubMed  Google Scholar 

  21. Mousa SA, Mohamed S. Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inhibitor. Thromb Haemost. 2004;92:627–33.

    CAS  PubMed  Google Scholar 

  22. Hamamoto T, Kisiel W. The effect of heparin on the regulation of factor VIIa–tissue factor activity by tissue factor pathway inhibitor. Blood Coagul Fibrinolysis. 1996;7:470–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ameziane N, Sequin C, Borget D, et al. The −33T → C polymorphism in intron 7 of the TFPI gene influences the risk of venous thromboembolism independently of the factor V Leiden and prothrombin mutations. Thromb Haemost. 2002;88:195–9.

    CAS  PubMed  Google Scholar 

  24. Moatti D, Meirhaeghe A, Ollivier V, Bauters C, Amouyel P, de Prost D. Polymorphisms of the tissue factor pathway inhibitor gene and the risk of restenosis after coronary angioplasty. Blood Coagul Fibrinolysis. 2001;12:317–23.

    Article  CAS  PubMed  Google Scholar 

  25. Punt CJ, Buyse M, Kohne CH, et al. Endpoints in adjuvant treatment trials: a systematic review of the literature in colon cancer and proposed definitions for future trials. J Natl Cancer Inst 2007;99:998–1003.

    Article  PubMed  Google Scholar 

  26. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    Article  PubMed  Google Scholar 

  27. Mueller BM, Reisfeld RA, Edginton TS, Ruf W. Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA. 1992;89:11832–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seto S, Onodera H, Kaido T, et al. Tissue factor expression in human colorectal carcinoma. Correlation with hepatic metastasis and impact on prognosis. Cancer. 2000;88:295–301.

    Article  CAS  PubMed  Google Scholar 

  29. Shigemori C, Wada H, Matsumoto K, Shiku H, Nakamura S, Suzuki H. Tissue factor expression and metastatic potential of colorectal cancer. Thromb Haemost. 1998;80:894–8.

    CAS  PubMed  Google Scholar 

  30. Stavik B, Tinholt M, Sletten M, Skretting G, Sandset PM, Iversen N. TFPIα and TFPIβ are expressed at the surface of breast cancer cells and inhibit TF-FVIIa activity. J Hematol Oncol. 2013;6:1–14.

    Article  Google Scholar 

  31. Yu J, May L, Milsom C, et al. Contribution of host-derived tissue factor to tumor neovascularization. Arterioscl Thromb Vasc Biol. 2008;28:1975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stavik B, Skrettin G, Aasheim H, et al. Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility. BMC Cancer. 2011;11:357–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mousa SA, Linhardt R, Francis JL, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin. Thromb Haemost. 2006;96:816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pihusch R, Danzl G, Scholz M, et al. Impact of thrombophilic gene mutations on thrombosis risk in patients with gastrointestinal carcinoma. Cancer. 2002;94:3120–6.

    Article  CAS  PubMed  Google Scholar 

  35. Eroglu A, Ulu A, Cam R, Kurtman C, Akar N. Prevalence of factor V 1691 G-A (Leiden) and prothrombin G20210A polymorphisms and the risk of venous thrombosis among cancer patients. J Thromb Thrombolysis. 2007;23:31–4.

    Article  CAS  PubMed  Google Scholar 

  36. Eroglu A, Cam R, Egin Y, Akar N. Factor V Leiden and prothrombin G20210A polymorphisms are not associated with disease-free survival in breast cancer (letter to the editor). Breast Cancer Res Treat. 2009;116:619–20.

    Article  CAS  PubMed  Google Scholar 

  37. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3′-untranlated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88:3698–703.

    CAS  PubMed  Google Scholar 

Download references

Disclosure

The authors declare no conflict of interest.

Funding

This work was supported by a grant from the Cancer Research Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Auer MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzarelli, A.K., Scheer, A.S., Tai, L.H. et al. Tissue Factor Pathway Inhibitor Gene Polymorphism −33T → C Predicts Improved Disease-Free Survival in Colorectal Cancer. Ann Surg Oncol 23, 2274–2280 (2016). https://doi.org/10.1245/s10434-016-5169-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-016-5169-4

Keywords

Navigation