Skip to main content

Advertisement

Log in

Vascular Endothelial Growth Factor-C Upregulates Cortactin and Promotes Metastasis of Esophageal Squamous Cell Carcinoma

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Vascular endothelial growth factor-C (VEGF-C) plays an important role during cancer progression and metastasis through activation of VEGF receptors. However, the role of VEGF-C in esophageal squamous cell carcinoma (ESCC) remains unclear.

Methods

The expression of VEGF-C in advanced stages of esophageal cancer was examined by immunohistochemistry and its expression was correlated with the protein level of cortactin (CTTN) by Western blot. Knockdown and overexpression of the CTTN protein were respectively performed to investigate the effects on VEGF-C-enhanced ESCC migration/invasion by in vitro transwell assay, cell tracing assay, and tumor growth/experimental metastasis in animal models.

Results

The expression of VEGF-C was positively correlated with tumor status and poor clinical prognosis in patient with esophageal cancer. VEGF-C-upregulated CTTN expression contributed the migration/invasive abilities of ESCC cell lines through Src-mediated downregulation of miR-326. Moreover, knockdown of CTTN expression significantly abolished VEGF-C-induced tumor growth and experimental lung metastasis in vivo.

Conclusions

Upregulation of CTTN is critical for VEGF-C-mediated tumor growth and metastasis of ESCC. These finding suggest that VEGF-C upregulated CTTN expression through Src-mediated downregulation of miR-326. CTTN may be a crucial mediator of VEGF-C-involved ESCC metastasis, which provides a potential target for diagnosis and individualized treatment in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO. The global burden of disease: 2004 update. 2008;12–3.

  2. Lam AK. Molecular biology of esophageal squamous cell carcinoma. Crit Rev Oncol Hematol. 2000;33(2):71–90.

    Article  CAS  PubMed  Google Scholar 

  3. Morita M, Yoshida R, Ikeda K, et al. Advances in esophageal cancer surgery in Japan: an analysis of 1000 consecutive patients treated at a single institute. Surgery. 2008;143(4):499–508.

    Article  PubMed  Google Scholar 

  4. Sugimachi K, Matsuoka H, Ohno S, Mori M, Kuwano H. Multivariate approach for assessing the prognosis of clinical oesophageal carcinoma. Br J Surg. 1988;75(11):1115–8.

    Article  CAS  PubMed  Google Scholar 

  5. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93.

    Article  CAS  PubMed  Google Scholar 

  6. Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer. 2007;96(4):541–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002;99(6):2179–84.

    Article  CAS  PubMed  Google Scholar 

  8. Su JL, Chen PS, Chien MH, et al. Further evidence for expression and function of the VEGF-C/VEGFR-3 axis in cancer cells. Cancer Cell. 2008;13(6):557–60.

    Article  CAS  PubMed  Google Scholar 

  9. Sun P, Gao J, Liu YL, Wei LW, Wu LP, Liu ZY. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances epirubicin sensitivity of breast cancer cells. Mol Cell Biochem. 2008;308(1–2):161–8.

    Article  CAS  PubMed  Google Scholar 

  10. Plate K. From angiogenesis to lymphangiogenesis. Nat Med. 2001;7(2):151–2.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka T, Ishiguro H, Kuwabara Y, et al. Vascular endothelial growth factor C (VEGF-C) in esophageal cancer correlates with lymph node metastasis and poor patient prognosis. J Exp Clin Cancer Res. 2010;29:83.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ding MX, Lin XQ, Fu XY, Zhang N, Li JC. Expression of vascular endothelial growth factor-C and angiogenesis in esophageal squamous cell carcinoma. World J Gastroenterol. 2006;12(28):4582–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Yu YL, Wei CW, Chen YL, Chen MH, Yiang GT. Immunotherapy of breast cancer by single delivery with rAAV2-mediated interleukin-15 expression. Int J Oncol. 2010;36(2):365–70.

    CAS  PubMed  Google Scholar 

  14. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Banas T. Up-regulation of VEGF-C secreted by cancer cells and not VEGF-A correlates with clinical evaluation of lymph node metastasis in esophageal squamous cell carcinoma (ESCC). Cancer Lett. 2007;249(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  15. Weaver AM. Cortactin in tumor invasiveness. Cancer Lett. 2008;265(2):157-66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4(6):470–80.

    Article  CAS  PubMed  Google Scholar 

  17. Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002;82(3):673–700.

    CAS  PubMed  Google Scholar 

  18. Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell. 2006;9(3):209–23.

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Zhou J, Zhu H, et al. VEGF-C promotes the development of esophageal cancer via regulating CNTN-1 expression. Cytokine. 2011;55(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  20. He M, Cheng Y, Li W, et al. Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. BMC Cancer. 2010;10:170.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kodama M, Kitadai Y, Tanaka M, et al. Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin Cancer Res. 2008;14(22):7205–14.

    Article  CAS  PubMed  Google Scholar 

  22. Yu H, Zhang S, Zhang R, Zhang L. The role of VEGF-C/D and Flt-4 in the lymphatic metastasis of early-stage invasive cervical carcinoma. J Exp Clin Cancer Res. 2009;28:98.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Okazawa T, Yoshida T, Shirai Y, et al. Expression of vascular endothelial growth factor C is a prognostic indicator in esophageal cancer. Hepatogastroenterology. 2008;55(86–87):1503–8.

    CAS  PubMed  Google Scholar 

  24. Liu P, Chen W, Zhu H, et al. Expression of VEGF-C correlates with a poor prognosis based on analysis of prognostic factors in 73 patients with esophageal squamous cell carcinomas. Jpn J Clin Oncol. 2009;39(10):644–50.

    Article  PubMed  Google Scholar 

  25. Tanaka T, Wakamatsu T, Daijo H, et al. Persisting mild hypothermia suppresses hypoxia-inducible factor-1alpha protein synthesis and hypoxia-inducible factor-1-mediated gene expression. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R661–71.

    Article  CAS  PubMed  Google Scholar 

  26. Kozlowski M, Naumnik W, Niklinski J, Milewski R, Dziegielewski P, Laudanski J. Vascular endothelial growth factor C and D expression correlates with lymph node metastasis and poor prognosis in patients with resected esophageal cancer. Neoplasma. 2011;58(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  27. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling: in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.

    Article  CAS  PubMed  Google Scholar 

  28. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15(2):290–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol. 2005;15(14):1276–85.

    Article  CAS  PubMed  Google Scholar 

  30. Kirkbride KC, Sung BH, Sinha S, Weaver AM. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adhes Migr. 2011;5(2):187–98.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Wang X, Cao W, Mo M, Wang W, Wu H, Wang J. VEGF and cortactin expression are independent predictors of tumor recurrence following curative resection of gastric cancer. J Surg Oncol. 2010;102(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hashimoto A, Hashimoto S, Ando R, et al. GEP100-Arf6-AMAP1-cortactin pathway frequently used in cancer invasion is activated by VEGFR2 to promote angiogenesis. PLoS One. 2011;6(8):e23359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Babashah S, Sadeghizadeh M, Hajifathali A, et al. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133(3):579–89.

    Article  CAS  PubMed  Google Scholar 

  34. Das S, Kumar M, Negi V, et al. MicroRNA-326 regulates profibrotic functions of transforming growth factor-beta in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2014;50(5):882–92.

    Article  CAS  PubMed  Google Scholar 

  35. Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010;12(11):1102–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhou J, Xu T, Yan Y, et al. MicroRNA-326 functions as a tumor suppressor in glioma by targeting the Nin one binding protein (NOB1). PLoS One. 2013;8(7):e68469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Science Council, Taiwan (NSC 102-2314-B-039-200, NSC 102-2314-B-038-028-MY3, NSC 101-2320-B-400-016-MY3); from National Health Research Institutes, Taiwan (CA-102-PP-41, CA-103-PP-35); from China Medical University Hospital (DMR-101-014); from China Medical University (CMU99-TC-22, CMU100-S-22) and from the Chi-Mei Medical Center (CMNCKU 10116). We thank Dr. Mien-Chie Hung kindly provided human ESCC cell lines. We thank National RNAi Core Facility (Academia Sinica, Taiwan) for providing specific shRNAs. We thank Ms. Fang-Yu Tsai, Dr. I-Shou Chang and Dr. Shih-Sheng Jiang of Taiwan Bioinformatics Institute Core Facility for assistances on using Oncomine (National Core Facility Program for Biotechnology, NSC-100-2319-B-400-001).

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Hsiung Wu MD, PhD, Chia-Sheng Yen MD or Jen-Liang Su PhD.

Additional information

Chih-Ming Su and Yen-Hao Su have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CM., Su, YH., Chiu, CF. et al. Vascular Endothelial Growth Factor-C Upregulates Cortactin and Promotes Metastasis of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 21 (Suppl 4), 767–775 (2014). https://doi.org/10.1245/s10434-014-4009-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-4009-7

Keywords

Navigation