Skip to main content
Log in

Cytoreductive Surgery and Intraoperative Administration of Paclitaxel-loaded Expansile Nanoparticles Delay Tumor Recurrence in Ovarian Carcinoma

  • Gynecologic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

ABSTRACT

Background

Locoregional recurrence significantly impacts survival and quality of life in patients with ovarian carcinoma. We hypothesize that local administration of paclitaxel-loaded expansile nanoparticles (pax-eNP) at the time of cytoreductive surgery decreases local tumor recurrence.

Methods

In vitro cytotoxicity of pax-eNP was assessed against both the OVCAR-3 human ovarian cancer cell line and tumor cells isolated from a malignant pleural effusion from a patient with multidrug-resistant ovarian cancer. A murine xenogenic model involving surgical cytoreduction of established OVCAR-3 intra-abdominal tumor was used to evaluate in vivo efficacy of intraoperative intraperitoneal (IP) injection of 10 mg/kg of paclitaxel either as pax-eNP or paclitaxel in Cremophor EL/ethanol solution (pax-C/E) versus empty eNP controls. Cytoreductive surgery and intraoperative treatment were performed 4 weeks after established tumor. All animals were sacrificed when empty eNP controls displayed extensive evidence of disease progression.

Results

Labeled-eNP entered tumor cells in vitro within 4 h and specifically accumulated at sites of tumor in vivo. Pax-eNP exhibited dose-dependent cytotoxicity in both OVCAR-3 and patient tumor cells isolated from a malignant pleural effusion and effectively prevented tumor recurrence following debulking (p = 0.003 vs. empty eNP). Furthermore, pax-eNP-treated animals did not develop severe recurrent carcinomatosis compared with 43 % of the pax-C/E-treated cohort, suggesting that single-dose intracavitary pax-eNP is more effective than an equivalent dose of pax-C/E.

Conclusions

Expansile nanoparticles readily enter human ovarian tumor cells and localize to sites of tumor in vivo with pax-eNP cytotoxicity resulting in superior inhibition of locoregional tumor recurrence following cytoreductive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. National Cancer Institute. NCI clinical announcement on intraperitoneal chemotherapy in ovarian cancer. 2006. http://ctep.cancer.gov/highlights/ovarian.html. Accessed 5 Jan 2006.

  2. Lewin S, Herzog T, Barrena Medel N, et al. Comparative performance of the new versus old FIGO staging system for endometrial cancer. Gynecol Oncol. 2010;116:S6–7.

    Google Scholar 

  3. Ang C, Chan KKL, Bryant A, et al. Ultra-radical (extensive) surgery versus standard surgery for the primary cytoreduction of advanced epithelial ovarian cancer. Cochrane Database Syst Rev. 2011;(4):CD007697. doi:10.1002/14651858.CD007697.pub2.

  4. Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2008. Bethesda: National Cancer Institute; 2011.

  5. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43–66.

    Article  PubMed  Google Scholar 

  6. du Bois A, Quinn M, Thigpen T, et al. 2004 Consensus statements on the management of ovarian cancer: final document of the 3rd International Gynecologic Cancer Intergroup Ovarian Cancer Consensus Conference (GCIG OCCC 2004). Ann Oncol. 2005;16 (Suppl 8):viii7–12.

    Article  PubMed  Google Scholar 

  7. Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  8. Walker J, Armstrong DK, Huang HK, et al. Intraperitoneal catheter outcomes in a phase III trial of intravenous versus intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2006;100(1):27–32.

    Article  PubMed  Google Scholar 

  9. Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21 (17):3194–200.

    Article  PubMed  CAS  Google Scholar 

  10. Kirmani S, Braly PS, McClay EF, et al. A comparison of intravenous versus intraperitoneal chemotherapy for the initial treatment of ovarian cancer. Gynecol Oncol. 1994;54 (3):338–44.

    Article  PubMed  CAS  Google Scholar 

  11. Coleman, Brady, McMeekin, et al. A phase II evaluation of nanoparticle, albumin-bound (nab) paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2011;122 (1):111–5.

    Article  PubMed  CAS  Google Scholar 

  12. Werner ME, Karve S, Sukumar R, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials. 2011;32 (33):8548–54.

    Article  PubMed  CAS  Google Scholar 

  13. Sloat BR, Sandoval MA, Li D, et al. In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles. Int J Pharm. 2011;409 (1–2):278–88.

    Article  PubMed  CAS  Google Scholar 

  14. Sawicki JA, Anderson DG, Langer R. Nanoparticle delivery of suicide DNA for epithelial ovarian cancer therapy. Adv Exp Med Biol. 2008;622:209–19.

    Article  PubMed  CAS  Google Scholar 

  15. Schulz MD, Zubris KA, Wade JE, et al. Paclitaxel-loaded expansile nanoparticles in a multimodal treatment model of malignant mesothelioma. Ann Thorac Surg. 2011;92 (6):2007–13.

    Article  PubMed  Google Scholar 

  16. Griset AP, Walpole J, Liu R, et al. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid responsive polymeric drug delivery system. J Am Chem Soc. 2009;131:2469–71.

    Article  PubMed  CAS  Google Scholar 

  17. Hamilton TC, Young RC, Louie KG, et al. Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intraabdominal carcinomatosis in mice. Cancer Res. 1984;44:5286–90.

    PubMed  CAS  Google Scholar 

  18. Massazza G, Tomasoni A, Lucchini V, et al. Intraperitoneal and subcutaneous xenografts of human ovarian carcinoma in nude mice and their potential in experimental therapy. Int J Cancer. 1989;44:494–500.

    Article  PubMed  CAS  Google Scholar 

  19. Joerger M, et al. Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European Organization for Research and Treatment of Cancer-Pharmacology and Molecular Mechanisms Group and New Drug Development Group. Clin Cancer Res. 2007;13:6410.

    Article  PubMed  CAS  Google Scholar 

  20. Yen MS, Juang CM, Lai CR, et al. Intraperitoneal cisplatin-based chemotherapy vs. intravenous cisplatin-based chemotherapy for stage III optimally cytoreduced epithelial ovarian cancer. Int J Gynaecol Obstet. 2001;72 (1):55–60.

    Article  PubMed  CAS  Google Scholar 

  21. Konner JA, Grabon D, Pezzulli S, et al. A phase II study of intravenous (IV) and intraperitoneal (IP) paclitaxel, IP cisplatin, and IV bevacizumab as first-line chemotherapy for optimal stage II or III ovarian, primary peritoneal, and fallopian tube cancer [abstract]. J Clin Oncol. 2009;27:5539.

    Google Scholar 

  22. Hoskins WJ, McGuire WP, Brady MF, et al. The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol. 1994;170 (4):974–9.

    Google Scholar 

  23. Hoskins WJ, Bundy BN, Thigpen JT, et al. The influence of cytoreductive surgery on recurrence-free interval and survival in small-volume stage III epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 1992;47 (2):159–66.

    Article  PubMed  CAS  Google Scholar 

  24. Bristow RE, Tomacruz RS, Armstrong DK, et al. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20 (5):1248–59.

    Article  PubMed  Google Scholar 

  25. Araujo L, Lobenberg R, Kreuter J. Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Targeting. 1999;6:373–85.

    Article  CAS  Google Scholar 

  26. Armstrong DK, Fleming GF, Markman M, Bailey HH. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2006;103:391–6.

    Article  PubMed  CAS  Google Scholar 

  27. Zubris KA, Colson YL, Grinstaff MW. Hydrogels as intracellular depots for drug delivery. Mol Pharm. 2012;9(1):196–200.

    Article  PubMed  CAS  Google Scholar 

  28. Lammers T, Hannink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer. 2008;99(3):392–7.

    Article  PubMed  CAS  Google Scholar 

  29. Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  PubMed  CAS  Google Scholar 

  30. Kim BY, Rutka JT, Chan WC, et al. Nanomedicine. N Engl J Med. 2010;363:2434–43.

    Article  PubMed  CAS  Google Scholar 

  31. Gilmore D, Colson YL. Tumor targeted nanoparticles: a modern day Trojan horse. Semin Thorac Cardiovasc Surg. 2011;23(1):10–11.

    Article  PubMed  Google Scholar 

  32. Yang CY, Liaw YF, Chu CM, Sheen IS. White count, pH and lactate in ascites in the diagnosis of spontaneous bacterial peritonitis. Hepatology. 1985;5(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  33. Emoto S, Kitayama J, Yamaguchi H, Ishigami H, Kaisaki S, Nagawa H. Analysis of pO2 in malignant ascites of patients with peritoneal dissemination of gastric cancer. Case Rep Oncol. 2010;3:344–8.

    Article  PubMed  Google Scholar 

  34. Wike-Hooley JL, Haveman J, Reinhold HS. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984;2:343–66.

    Article  PubMed  CAS  Google Scholar 

  35. Boyer MJ, Tannock IF. Regulation of intracellular pH in tumor cell lines: influence of microenvironmental conditions. Cancer Res. 1992;52:4441–7.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors express their appreciation to Brigham and Women’s Hospital, the Dana-Farber Cancer Institute Animal Facility, and Beth Israel Deaconess Medical Center Confocal Imaging Core who kindly provided their expertise and guidance. This work was supported by the Center for Integration of Medicine and Innovative Technology, the Cross-Disciplinary Training in Nanotechnology for Cancer, NIH R25 CA153955, and the NSF DMR-1006601.

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Gilmore MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmore, D., Schulz, M., Liu, R. et al. Cytoreductive Surgery and Intraoperative Administration of Paclitaxel-loaded Expansile Nanoparticles Delay Tumor Recurrence in Ovarian Carcinoma. Ann Surg Oncol 20, 1684–1693 (2013). https://doi.org/10.1245/s10434-012-2696-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2696-5

Keywords

Navigation