Skip to main content

Advertisement

Log in

Development of Aerosol Phospholipid Microparticles for the Treatment of Pulmonary Hypertension

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension (PAH) is an incurable cardiovascular disease characterized by high blood pressure in the arteries leading from the heart to the lungs. Over two million people in the USA are diagnosed with PAH annually and the typical survival rate is only 3 years after diagnosis. Current treatments are insufficient because of limited bioavailability, toxicity, and costs associated with approved therapeutics. Aerosol delivery of drugs is an attractive approach to treat respiratory diseases because it increases localized drug concentration while reducing systemic side effects. In this study, we developed phospholipid-based aerosol microparticles via spray drying consisting of the drug tacrolimus and the excipients dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The phospholipid-based spray-dried aerosol microparticles were shown to be smooth and spherical in size, ranging from 1 to 3 μm in diameter. The microparticles exhibited thermal stability and were amorphous after spray drying. Water content in the microparticles was under 10%, which will allow successful aerosol dispersion and long-term storage stability. In vitro aerosol dispersion showed that the microparticles could successfully deposit in the deep lung, as they exhibited favorable aerodynamic diameters and high fine particle fractions. In vitro dose-response analysis showed that TAC is nontoxic in the low concentrations that would be delivered to the lungs. Overall, this work shows that tacrolimus-loaded phospholipid-based microparticles can be successfully created with optimal physicochemical and toxicological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Archer S, Weir E, Wilkins M. Basic science of pulmonary arterial hypertension for clinicians new concepts and experimental theories. Circulation. 2010;121(18):2045–U175.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saigal A, Ng WK, Tan RBH, Chan SY. Development of controlled release inhalable polymeric microspheres for treatment of pulmonary hypertension. Int J Pharm. 2013;450:114–22.

    Article  CAS  PubMed  Google Scholar 

  3. Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J am Coll Cardiol. 2004;43(12s1):S13–24.

    Article  Google Scholar 

  4. Spiekerkoetter E, Tian X, Cai J, Hopper R, Sudheendra D, Li C, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Investig. 2013;123(8):3600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv rev. 2006;58:1009–29.

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Mansour HM. Physicochemical characterization and water vapor sorption of organic solution advances spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery. AAPS PharmSciTech. 2011;12(4).

  7. Meenach SA, Vogt FG, Anderson KW, Hilt JZ, McGarry RC, Mansour HM. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine. 2013;8:275–93.

    PubMed  PubMed Central  Google Scholar 

  8. Bosquillon C, Lombry C, Preat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  9. Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanopartcile sol. J Colloid Interface Sci. 2003;265(3):296–303.

    Article  CAS  PubMed  Google Scholar 

  10. Hoe S, Ivey JW, Boraey MA, Shamsaddini-Shahrbabak A, Javaheri E, Matinkhoo S, et al. Use of a fundamental approach to spray-drying formulation design to facilitate the development of multi-component dry powder aerosols for respiratory drug delivery. Pharm res. 2014;31:449–65.

    Article  CAS  PubMed  Google Scholar 

  11. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary delivery. Pharmaceutical Research. 2007;24(3).

  12. Meenach SA. High-performing dry powder inhalers of paclitaxel DPPC/DPPG lung surfactant-mimic multifunctional particles in lung cancer: physiochemical characterization, in vitro aerosol dispersion, and cellular studies. AAPS PharmSciTech. 2014;15(6):1574–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ré M-I. Formulating drug delivery systems by spray drying. Dry Technol. 2006;24:433–46.

    Article  Google Scholar 

  14. Hong K-H, Lee YJ, Lee E, Park SO, Han C, Beppu H, et al. Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary hypertension. Circulation. 2008;118(7):722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122:156–63.

    Article  PubMed  Google Scholar 

  16. Cho JH. Development of novel fast-dissolving tacrolimus solid-dispersion-loaded prolonged release tablet. Eur J Pharm Sci. 2014:1–7.

  17. Gao S, Sun J, Fu D, Zhao H, Lan M, Gao F. Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-ß-cyclodextrin inclusion complex-loaded albumin. Int J Pharm. 2012;427:410–6.

    Article  CAS  PubMed  Google Scholar 

  18. Watts AB, Peters JI, Talbert RL, O'Donnell KP, Coalson JJ, Williams RO. Preclinical evaluation of tacrolimus colloidal dispersion for inhalation. Eur J Pharm Biopharm. 2011;77(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta V, Gupta N, Shaik IH, Mehvar R, McMurtry IF, Oka M, et al. Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release. 2013;167(2):189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayes DJ, Zwischenberger JB, Mansour HM. Aerosolized tacrolimus: a case report in a lung transplant recipient. Transplant Proc. 2010;42:3876–9.

    Article  PubMed  Google Scholar 

  21. Schrepfer S, Deuse T, Reichenspurner H, Hoffmann J, Haddad M, Fink J, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transplant. 2007;7(7):1733–42.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Cuddigan JL, Gupta SK, Meenach SA. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. Int J Pharm. 2016;512(1):305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen L, Nakano K, Kimura S, Matoba T, Iwata E, Miyagawa M, et al. Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression to monocrotaline-induced pulmonary artery hypertension. Hypertension. 2011;57(2):343–50.

    Article  CAS  PubMed  Google Scholar 

  24. Kimura S, Egashira K, Chen L, Nakano K, Iwata E, Miyagawa M, et al. Nanoparticle-mediated delivery of nuclear factor κB into lung ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension. 2009;53(5):577–83.

    Article  Google Scholar 

  25. Evora C, Soriano I, Rogers RA, Shakesheff KM, Hanes J, Langer R. Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J Control Release. 1998;51(2–3):143–52.

    Article  CAS  PubMed  Google Scholar 

  26. Mansour H, Wang DS, Chen CS, Zografi G. Comparison of bilayer and monolayer properties of phospholipid systems containing dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylinositol. Langmuir. 2001;17(21):6622–32.

    Article  CAS  Google Scholar 

  27. Alves GP, Santana MHA. Phospholipid dry powders produced by spray drying processing: structural, thermodynamic and physical properties. Powder Technol. 2004;145:139–48.

    Article  CAS  Google Scholar 

  28. Mansour HM, Sohn M, Al-Ghananeem A, DeLuca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010;11(9):3298–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mansour HM, Xu Z, Meenach SA, Deluca PP. Novel drug delivery systems: inhalation aerosols, pulmonary/nasal drug delivery, and nanomedicine. In: Mitra A, editor. Drug Delivery 2013.

  30. Meenach SA, Anderson KW, Hilt JZ, McGarry RC, Mansour HM. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer. Eur J Pharm Sci. 2013;49(4):699–711.

    Article  CAS  PubMed  Google Scholar 

  31. Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11(7):36–42.

    Google Scholar 

  32. Hickey AJ, Mansour HM. Delivery of drugs by the pulmonary route. In: Florence AT, Siepmann J, editors. Modern pharmaceutics. 2. 5th ed. New York: Taylor and Francis; 2009. p. 191–219.

    Google Scholar 

  33. Finlay WH. The mechanics of inhaled pharmaceutical aerosols: an introduction. London: Academic Press; 2001.

    Google Scholar 

  34. Mansour HM, Zografi G. The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J Pharm Sci. 2007;96(2):377–96.

    Article  CAS  PubMed  Google Scholar 

  35. Mansour HM, Zografi G. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. Langmuir. 2007;23:3809–19.

    Article  CAS  PubMed  Google Scholar 

  36. Wu X, Hayes DJ, Zwischenberger JB, Kuhn RJ, Mansour HM. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation. Drug des Devel Ther. 2013;7:59–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25(12):563–70.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors gratefully acknowledge financial support from an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103430. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Finally, the authors thank RI-INBRE for UPLC access and RIN2 for SEM, PXRD, and DSC access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha A. Meenach.

Ethics declarations

Conflict of Interest

No conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brousseau, S., Wang, Z., Gupta, S.K. et al. Development of Aerosol Phospholipid Microparticles for the Treatment of Pulmonary Hypertension. AAPS PharmSciTech 18, 3247–3257 (2017). https://doi.org/10.1208/s12249-017-0821-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0821-2

KEY WORDS

Navigation