Skip to main content
Log in

Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chloramphenicol is an old antibiotic agent that is re-emerging as a valuable alternative for the treatment of multidrug-resistant pathogens. However, it exhibits suboptimal biopharmaceutical properties and toxicity profiles. In this work, chloramphenicol was combined with essential amino acids (arginine, cysteine, glycine, and leucine) with the aim of improving its dissolution rate and reduce its toxicity towards leukocytes. The chloramphenicol/amino acid solid samples were prepared by freeze-drying method and characterized in the solid state by using Fourier transform infrared spectroscopy, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance. The dissolution properties, antimicrobial activity, reactive oxygen species production, and stability of the different samples were studied. The dissolution rate of all combinations was significantly increased in comparison to that of the pure active pharmaceutical ingredient. Additionally, oxidative stress production in human leukocytes caused by chloramphenicol was decreased in the chloramphenicol/amino acid combinations, while the antimicrobial activity of the antibiotic was maintained. The CAP:Leu binary combination resulted in the most outstanding solid system makes it suitable candidate for the development of pharmaceutical formulations of this antimicrobial agent with an improved safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Falagas ME, Grammatikos AP, Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti-Infe. 2008;6(5):593–600.

    Article  Google Scholar 

  2. Stratton CW. Chloramphenicol. Antimicrob Infect Dis Newsl. 2002;18(12):89–91.

    Article  Google Scholar 

  3. Sweetman SC, Blake PS. Martindale: the complete drug reference. 36th ed. London: Pharmaceutical Press; 2009.

    Google Scholar 

  4. Liaqat I, Sumbal F, Sabri AN. Tetracycline and chloramphenicol efficiency against selected biofilm forming bacteria. Curr Microbiol. 2009;59(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  5. Moffa M, Brook I. 26 - Tetracyclines, glycylcyclines, and chloramphenicol. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett′s Principles and Practice of. Infectious Diseases. 8th ed. Philadelphia: Saunders; 2015. p. 322–38.

    Google Scholar 

  6. Singh R, Sripada L, Singh R. Side effects of antibiotics during bacterial infection: mitochondria, the main target in host cell. Mitochondrion. 2014;16:50–4.

    Article  PubMed  Google Scholar 

  7. Rodríguez-Spong B. General principles of pharmaceutical solid polymorphism A supramolecular perspective. Adv Drug Deliv Rev. 2004;56(3):241–74.

    Article  PubMed  Google Scholar 

  8. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;12(5):2147–52.

    Article  CAS  Google Scholar 

  10. Balk A, Wiest J, Widmer T, Galli B, Holzgrabe U, Meinel L. Transformation of acidic poorly water soluble drugs into ionic liquids. Eur J Pharm Biopharm. 2015;94:73–82.

    Article  CAS  PubMed  Google Scholar 

  11. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–25.

    Article  CAS  PubMed  Google Scholar 

  12. Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114(21):10940–75.

    Article  CAS  PubMed  Google Scholar 

  13. Loftsson T, Brewster ME. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci. 2012;101(9):3019–32.

    Article  CAS  PubMed  Google Scholar 

  14. Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs—part 1: preparation, stability and dissolution enhancement. Eur J Pharm Biopharm. 2013;85(3, Part B):873–81.

    Article  PubMed  Google Scholar 

  15. Löbmann K, Laitinen R, Strachan C, Rades T, Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs—part 2: molecular interactions. Eur J Pharm Biopharm. 2013;85(3, Part B):882–8.

    Article  PubMed  Google Scholar 

  16. Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81(1):159–69.

    Article  PubMed  Google Scholar 

  17. Grohganz H, Priemel PA, Löbmann K, Nielsen LH, Laitinen R, Mullertz A, et al. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Del. 2014;11(6):977–89.

    Article  CAS  Google Scholar 

  18. Kanaujia P, Poovizhi P, Ng WK, Tan RBH. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol. 2015;285:2–15.

    Article  CAS  Google Scholar 

  19. Aiassa V, Zoppi A, Albesa I, Longhi MR. Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production. Carbohydr Polym. 2015;121:320–7.

    Article  CAS  PubMed  Google Scholar 

  20. Aiassa V, Zoppi A, Becerra MC, Albesa I, Longhi MR. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex. Carbohydr Polym. 2016;152:672–8.

    Article  CAS  PubMed  Google Scholar 

  21. Harris RK. Nuclear magnetic resonance spectroscopy. London: Longman Scientific and Technical; 1994.

    Google Scholar 

  22. The United States Pharmacopeia (USP 30). Rockville, MD 2007.

  23. US Department of Health and Human Services FaC. Guidance for industry. Dissolution testing of immediate release solid oral dosage forms. 1997.

  24. Zuorro A, Fidaleo M, Lavecchia R. Solubility enhancement and antibacterial activity of chloramphenicol included in modified β-cyclodextrins. B Kor Chem Soc. 2010;31(11):3460–2.

    Article  CAS  Google Scholar 

  25. Zołek T, Paradowska K, Krajewska D, Rózański A, Wawer I. 1H, 13C MAS NMR and GIAO-CPHF calculations of chloramphenicol, thiamphenicol and their pyrrole analogues. J Mol Struct. 2003;646(1–3):141–9.

    Google Scholar 

  26. Tadeusiak EJ, Ciesielski W, Olejniczak S. Determination of enantiomeric excess of leucine by 13C CP-MAS solid-state NMR. Appl Magn Reson. 2008;35(1):155–61.

    Article  CAS  Google Scholar 

  27. Prakash S, Iturmendi N, Grelard A, Moine V, Dufourc E. Quantitative analysis of Bordeaux red wine precipitates by solid-state NMR: role of tartrates and polyphenols. Food Chem. 2016;199:229–37.

    Article  CAS  PubMed  Google Scholar 

  28. Holt DE, Bajoria R. The role of nitro-reduction and nitric oxide in the toxicity of chloramphenicol. Hum Exp Toxicol. 1999;18(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  29. Eraso AJ, Albesa I. Eriobotrya japonica counteracts reactive oxygen species and nitric oxide stimulated by chloramphenicol. Am J Chin Med. 2007;35(5):875–85.

    Article  CAS  PubMed  Google Scholar 

  30. Gutteridge JMC. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 1995;41:1819–28.

    CAS  PubMed  Google Scholar 

  31. Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 2003;25(3):207–18.

    Article  CAS  PubMed  Google Scholar 

  32. Monti GA, Chattah AK, Linck YG. Solid-state nuclear magnetic resonance in pharmaceutical compounds. Ann R NMR S. 2014. p. 221–69.

Download references

Acknowledgements

Authors wish to acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Córdoba, both of which provided support and facilities for this investigation. This work was supported by the Fondo para la Investigación Científica y Tecnológica (FONCYT) [Préstamo BID PICT 2013-2150] and the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariana Zoppi.

Electronic Supplementary Material

ESM 1

(DOC 44 kb)

ESM 2

(DOC 41 kb)

ESM 3

(DOC 40 kb)

ESM 4

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterren, V.B., Aiassa, V., Garnero, C. et al. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress. AAPS PharmSciTech 18, 2910–2918 (2017). https://doi.org/10.1208/s12249-017-0775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0775-4

KEY WORDS

Navigation