Skip to main content
Log in

Membrane Rigidity Determined by Atomic Force Microscopy Is a Parameter of the Permeability of Liposomal Membranes to the Hydrophilic Compound Calcein

  • Brief/Technical Note
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

We determined the permeability coefficient of a model hydrophilic drug, calcein, encapsulated within saturated lipid-based nano-sized liposomes of various lipid profiles. We demonstrated that the addition of cholesterol to liposomes containing saturated lipids increased the permeability of the liposomal membrane to calcein via a decrease in the membrane bending modulus, as determined by means of atomic force microscopy. We found an inverse correlation between the membrane bending modulus of saturated lipid-based nano-sized liposomes and the permeability coefficient of encapsulated calcein, demonstrating that bending modulus, as determined by means of atomic force microscopy, is a quantitative parameter describing the permeability of liposomal membranes to calcein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  3. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51.

    Article  CAS  PubMed  Google Scholar 

  4. Düzgüneş N, Nir S. Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev. 1999;40:3–18.

    Article  Google Scholar 

  5. Sakai-Kato K, Nanjo K, Kawanishi T, Okuda H, Goda Y. Effects of lipid composition on the properties of doxorubicin-loaded liposomes. Ther Deliv. 2015;6:785–94.

    Article  CAS  PubMed  Google Scholar 

  6. Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–42.

    Article  CAS  PubMed  Google Scholar 

  7. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115:10938–66.

    Article  CAS  PubMed  Google Scholar 

  8. Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103:29–52.

    Article  CAS  PubMed  Google Scholar 

  9. Liang X, Mao G, Ng KYS. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interface Sci. 2004;278:53–62.

    Article  CAS  PubMed  Google Scholar 

  10. Kirby C, Clarke J, Gregoriadis G. Biochem J. 1980;186:591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kitayama H, Takechi Y, Tamai N, Matsuki H, Yomota C, Saito H. Thermotropic phase behavior of hydrogenated soybean phosphatidylcholine-cholesterol binary liposome membrane. Chem Pharm Bull. 2014;62:58–63.

    Article  CAS  PubMed  Google Scholar 

  12. Xiang TX, Anderson BD. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Biophys J. 1997;72:223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bloom M, Burnell EE, Mackay AL, Nichol CP, Valic MI, Weeks G. Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance. Biochemistry. 1978;17:5750–62.

    Article  CAS  PubMed  Google Scholar 

  14. Vermeer LS, De Groot BL, Réat V, Milon A, Czaplicki J. Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments. Eur Biophys J. 2007;36:919–31.

    Article  CAS  PubMed  Google Scholar 

  15. Delorme N, Fery A. Direct method to study membrane rigidity of small vesicles based on atomic force microscope force spectroscopy. Phys Rev E. 2006;74:030901.

    Article  CAS  Google Scholar 

  16. Spyratou E, Mourelatou EA, Makropoulou M, Demetzos C. Atomic force microscopy: a tool to study the structure, dynamics and stability of liposomal drug delivery systems. Expert Opin Drug Deliv. 2009;6:305–17.

    Article  CAS  PubMed  Google Scholar 

  17. Reviakine I, Brisson A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir. 2000;16:1806–15.

    Article  CAS  Google Scholar 

  18. Takechi-Haraya Y, Sakai-Kato K, Abe Y, Kawanishi T, Okuda H, Goda Y. Observation of liposomes of differing lipid composition in aqueous medium by means of atomic force microscopy. Microscopy. 2016;65:383–389.

  19. Takechi-Haraya Y, Sakai-Kato K, Abe Y, Kawanishi T, Okuda H, Goda Y. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir. 2016;32:6074–82.

  20. Rui Y, Wang S, Low PS, Thompson DH. Diplasmenylcholine-folate liposomes: an efficient vehicle for intracellular drug delivery. J Am Chem Soc. 1998;120:11213–8.

    Article  CAS  Google Scholar 

  21. Pan J, Tristram-Nagle JF. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80:021931.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10:3076–89.

    Article  CAS  PubMed  Google Scholar 

  23. MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao HK, Hu LR. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991;1061:297–303.

    Article  CAS  PubMed  Google Scholar 

  24. Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029:91–7.

    Article  CAS  PubMed  Google Scholar 

  25. Vorobyov I, Olson TE, Kim JH, Koeppe RE, Andersen OS, Allen TW. Ion-induced defect permeation of lipid membranes. Biophys J. 2014;106:586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herce HD, Garcia AE, Cardoso MC. Fundamental molecular mechanism for the cellular uptake of gaunidinium-rich molecules. J Am Chem Soc. 2014;136:17459–4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallach DFH, Surgenor DM, Soderberg J, Delano E. Preparation and properties of 3,6-dihydroxy-2,4-bis-[N-N-di(carboxymethyl)-aminomethyl]fluoran. Anal Chem. 1959;31:456–60.

    Article  CAS  Google Scholar 

  28. Soto-Arriaza MA, Sotmayor CP, Lissi EA. Relationship between lipid peroxidation and rigidity in L-alpha-phophatidylcholine-DPPC vesicles. J Colloid Interface Sci. 2008;323:70–4.

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez SA, Tricerry MA, Gunther G, Gratton E. Laurdan generalized polarization: from cuvette to microscope. Mod Res Educ Top Microsc. 2007;2:1007–14.

    Google Scholar 

  30. Parasshi T, Krasnowska EK, Bagatolli L, Gratton E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc. 1998;8:365–73.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by funding from the Research on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics project of the Japan Agency for Medical Research and Development (AMED). This work was also supported by the Research Resident Program from AMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumiko Sakai-Kato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takechi-Haraya, Y., Sakai-Kato, K. & Goda, Y. Membrane Rigidity Determined by Atomic Force Microscopy Is a Parameter of the Permeability of Liposomal Membranes to the Hydrophilic Compound Calcein. AAPS PharmSciTech 18, 1887–1893 (2017). https://doi.org/10.1208/s12249-016-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0624-x

Keywords

Navigation