Skip to main content

Advertisement

Log in

Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Curcuma comosa (C. comosa) is widely used in traditional medicine as a dietary supplement for health promotion in postmenopausal women in Thailand. It contains several diarylheptanoids, which are considered to be a novel class of phytoestrogens. However, the diarylheptanoids isolated from the plant rhizome are shown to have low oral bioavailability and faster elimination characteristics. The aim of this study was to investigate the permeation behavior of the active compounds of diarylheptanoids. The effects of binary vehicle systems and permeation enhancers on diarylheptanoids permeation and accumulation within the skin were studied using side-by-side diffusion cells through the porcine ear skin. Among the tested binary vehicle systems, the ethanol/water vehicle appeared to be the most effective system for diarylheptanoids permeation with the highest flux and shortest lag time. The presence of transcutol in the vehicle system significantly increased diarylheptanoid’s permeation and accumulation within the skin in a concentration-dependent manner. Although the presence of terpenes in formulation decreased the flux of diarylheptanoids, it raised the amount of diarylheptanoids retained within the skin substantially. Based on the feasibility of diarylheptanoid permeation, C. comosa extract should be further developed into an effective transdermal product for health benefits and hormone replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

C. comosa :

Curcuma comosa

D:

Diffusion coefficient

DA:

Diarylheptanoids

HPLC:

High-performance liquid chromatography

K:

Partition coefficient

P:

Permeability coefficient

PBS:

Phosphate buffer saline

PG:

Propylene glycol

PEG:

Polyethylene glycol

TEWL:

Transepidermal water loss

Tlag :

Lag time

References

  1. Prior JC. Perimenopause: the complex endocrinology of the menopausal transition. Endocr Rev. 1998;19(4):397–428.

    Article  CAS  PubMed  Google Scholar 

  2. Winuthayanon W, Piyachaturawat P, Suksamrarn A, Ponglikitmongkol M, Arao Y, Hewitt SC, et al. Diarylheptanoid phytoestrogens isolated from the medicinal plant Curcuma comosa: biologic actions in vitro and in vivo indicate estrogen receptor-dependent mechanisms. Environ Health Perspect. 2009;117(7):1155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piyachaturawat P, Ercharuporn S, Suksamrarn A. Uterotrophic effect of Curcuma comosa in rats. Int J Pharmacogn. 1995;33(4):5.

    Article  Google Scholar 

  4. Winuthayanon W, Suksen K, Boonchird C, Chuncharunee A, Ponglikitmongkol M, Suksamrarn A, et al. Estrogenic activity of diarylheptanoids from Curcuma comosa Roxb. requires metabolic activation. J Agric Food Chem. 2009;57(3):840–5.

    Article  CAS  PubMed  Google Scholar 

  5. Sornkaewa N, Lin Y, Wang F, Zhang G, Chokchaisiri R, Zhang A, et al. Diarylheptanoids of Curcuma comosa with inhibitory effects on nitric oxide production in macrophage RAW 264.7 cells. Nat Prod Commun. 2015;10(1):89–93.

    PubMed  Google Scholar 

  6. Sodsai A, Piyachaturawat P, Sophasan S, Suksamrarn A, Vongsakul M. Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Int Immunopharmacol. 2007;7(4):524–31.

    Article  CAS  PubMed  Google Scholar 

  7. Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A, et al. Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PloS one. 2013;8(11):e78739.

  8. Weerachayaphorn J, Chuncharunee A, Mahagita C, Lewchalermwongse B, Suksamrarn A, Piyachaturawat P. A protective effect of Curcuma comosa Roxb. on bone loss in estrogen deficient mice. J Ethnopharmacol. 2011;137(2):956–62.

    Article  PubMed  Google Scholar 

  9. Piyachaturawat P, Teeratagolpisal N, Toskulkao C, Suksamrarn A. Hypolipidemic effect of Curcuma comosa in mice. Artery. 1997;22(5):233–41.

    CAS  PubMed  Google Scholar 

  10. Su J, Sripanidkulchai B, Sripanidkulchai K, Piyachaturawat P, Wara-Aswapati N. Effect of Curcuma comosa and estradiol on the spatial memory and hippocampal estrogen receptor in the post-training ovariectomized rats. J Nat Med. 2011;65(1):57–62.

    Article  PubMed  Google Scholar 

  11. Su J, Sripanidkulchai K, Wyss JM, Sripanidkulchai B. Curcuma comosa improves learning and memory function on ovariectomized rats in a long-term Morris water maze test. J Ethnopharmacol. 2010;130(1):70–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Su J, Sripanidkulchai K, Hu Y, Chaiittianan R, Sripanidkulchai B. Increased in situ intestinal absorption of phytoestrogenic diarylheptanoids from Curcuma comosa in nanoemulsions. AAPS PharmSciTech. 2013;14(3):1055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Su J, Sripanidkulchai K, Suksamrarn A, Hu Y, Piyachuturawat P, Sripanidkulchai B. Pharmacokinetics and organ distribution of diarylheptanoid phytoestrogens from Curcuma comosa in rats. J Nat Med. 2012;66(3):468–75.

    Article  CAS  PubMed  Google Scholar 

  14. Hamishehkar H, Khoshbakht M, Jouyban A, Ghanbarzadeh S. The relationship between solubility and transdermal absorption of tadalafil. Adv Pharm Bull. 2015;5(3):411–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Suwanpidokkul N, Thongnopnua P, Umprayn K. Transdermal delivery of zidovudine (AZT): the effects of vehicles, enhancers, and polymer membranes on permeation across cadaver pig skin. AAPS PharmSciTech. 2004;5(3), e48.

    Article  PubMed  Google Scholar 

  16. Sullivan Jr DW, Gad SC, Julien M. A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food Chem Toxicol. 2014;72:40–50.

    Article  CAS  PubMed  Google Scholar 

  17. Mura P, Faucci MT, Bramanti G, Corti P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci. 2000;9(4):365–72.

    Article  CAS  PubMed  Google Scholar 

  18. Sapra B, Jain S, Tiwary AK. Percutaneous permeation enhancement by terpenes: mechanistic view. AAPS J. 2008;10(1):120–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaddi HK, Ho PC, Chan YW, Chan SY. Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes. J Control Release. 2002;81(1–2):121–33.

    Article  CAS  PubMed  Google Scholar 

  20. Gao S, Singh J. In vitro percutaneous absorption enhancement of a lipophilic drug tamoxifen by terpenes. J Control Release. 1998;51(2–3):193–9.

    Article  CAS  PubMed  Google Scholar 

  21. Narishetty ST, Panchagnula R. Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Release. 2004;95(3):367–79.

    Article  CAS  PubMed  Google Scholar 

  22. Machado M, Salgado TM, Hadgraft J, Lane ME. The relationship between transepidermal water loss and skin permeability. Int J Pharm. 2010;384(1–2):73–7.

    Article  CAS  PubMed  Google Scholar 

  23. Smith HR, Rowson M, Basketter DA, McFadden JP. Intra-individual variation of irritant threshold and relationship to transepidermal water loss measurement of skin irritation. Contact Dermatitis. 2004;51(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  24. Gwak HS, Chun IK. Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of tenoxicam through hairless mouse skin. Int J Pharm. 2002;236(1–2):57–64.

    Article  CAS  PubMed  Google Scholar 

  25. Lee PJ, Ahmad N, Langer R, Mitragotri S, Prasad SV. Evaluation of chemical enhancers in the transdermal delivery of lidocaine. Int J Pharm. 2006;308(1–2):33–9.

    Article  CAS  PubMed  Google Scholar 

  26. Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropyl myristate-based vehicles. AAPS PharmSciTech. 2014;15(4):947–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aungst BJ, Blake JA, Hussain MA. Contributions of drug solubilization, partitioning, barrier disruption, and solvent permeation to the enhancement of skin permeation of various compounds with fatty acids and amines. Pharm Res. 1990;7(7):712–8.

    Article  CAS  PubMed  Google Scholar 

  28. Panchagnula R, Salve PS, Thomas NS, Jain AK, Ramarao P. Transdermal delivery of naloxone: effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int J Pharm. 2001;219(1–2):95–105.

    Article  CAS  PubMed  Google Scholar 

  29. Oh HJ, Oh YK, Kim CK. Effects of vehicles and enhancers on transdermal delivery of melatonin. Int J Pharm. 2001;212(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  30. Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.

    Article  CAS  PubMed  Google Scholar 

  31. Wen H, Hao JS, Li SK. Influence of permeant lipophilicity on permeation across human sclera. Pharm Res-Dordr. 2010;27(11):2446–56.

    Article  CAS  Google Scholar 

  32. Rao Y, Zheng F, Zhang X, Gao J, Liang W. In vitro percutaneous permeation and skin accumulation of finasteride using vesicular ethosomal carriers. AAPS PharmSciTech. 2008;9(3):860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Godwin DA, Kim NH, Felton LA. Influence of Transcutol CG on the skin accumulation and transdermal permeation of ultraviolet absorbers. Eur J Pharm Biopharm. 2002;53(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  34. El Maghraby GM, Alanazi FK, Alsarra IA. Transdermal delivery of tadalafil. I. Effect of vehicles on skin permeation. Drug Dev Ind Pharm. 2009;35(3):329–36.

    Article  PubMed  Google Scholar 

  35. Panchagnula R, Ritschel WA. Development and evaluation of an intracutaneous depot formulation of corticosteroids using Transcutol as a cosolvent: in-vitro, ex-vivo and in-vivo rat studies. J Pharm Pharmacol. 1991;43(9):609–14.

    Article  CAS  PubMed  Google Scholar 

  36. Williams AC, Barry BW. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharm Res. 1991;8(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  37. Fang JY, Hung CF, Chiu HC, Wang JJ, Chan TF. Efficacy and irritancy of enhancers on the in-vitro and in-vivo percutaneous absorption of curcumin. J Pharm Pharmacol. 2003;55(8):1175.

    Article  CAS  PubMed  Google Scholar 

  38. Okabe H, Obata Y, Takayama K, Nagai T. Percutaneous absorption enhancing effect and skin irritation of monocyclic monoterpenes. Drug Des Deliv. 1990;6(3):229–38.

    CAS  PubMed  Google Scholar 

  39. Songkro S, Rades T, Becket G. Effects of some terpenes on the in vitro permeation of LHRH through newborn pig skin. Pharmazie. 2009;64(2):110–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, and received scholarship under the Post-doctoral Program from Research Affairs and Graduate School, Khon Kaen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bungorn Sripanidkulchai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuntiyasawasdikul, S., Limpongsa, E., Jaipakdee, N. et al. Effects of Vehicles and Enhancers on the Skin Permeation of Phytoestrogenic Diarylheptanoids from Curcuma comosa . AAPS PharmSciTech 18, 895–903 (2017). https://doi.org/10.1208/s12249-016-0582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0582-3

KEY WORDS

Navigation