Skip to main content
Log in

Effect of Cyclodextrins on Morphology and Barrier Characteristics of Isolated Rabbit Corneas

  • Rapid Communication
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of the present study is to investigate the confounding effects, if any, of beta-cyclodextrins (βCDs) on corneal permeability coefficients obtained from in vitro transmembrane diffusion studies. Transcorneal permeability studies were carried out with 2-hydroxypropyl-beta-cyclodextrin (HPβCD) and randomly methylated-beta-cyclodextrin (RMβCD) at 5 and 2.5%w/v in isotonic phosphate-buffered solution (IPBS) (pH 7.4). Rabbit corneas received from Pel-Freez Biologicals® were used for these studies. Propranolol hydrochloride (PHCl) (1 mg/mL) was used as the paracellular permeability marker. A series of permeation studies were carried out with IPBS as the control, with CDs on the donor side only, CDs on the receiver side only, and CDs on both the donor and receiver sides. At the end of 1 or 3 h, corneas were collected and fixed using a solution containing 2%v/v glutaraldehyde + 2%w/v paraformaldehyde + IPBS and histological examinations were performed (Excalibur Pathology, Inc). The order of transcorneal permeability of PHCl was found to be CDs on the receiver side > control (no CDs) ≈ CDs on both the receiver and donor sides > CDs on the donor side. Histology studies revealed that the corneal epithelial and endothelial layers remained intact in the control sets. Damage to the cornea was observed in the order of CDs on the receiver side > CDs on the donor side > CDs on both sides > control. The use of CDs in solutions for in vitro permeation experiments with rabbit corneas needs to be carefully considered to avoid confounding effects in the data obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85(10):1017–25. doi:10.1021/js950534b.

    Article  CAS  PubMed  Google Scholar 

  2. Siefert B, Keipert S. Influence of alpha-cyclodextrin and hydroxyalkylated beta-cyclodextrin derivatives on the in vitro corneal uptake and permeation of aqueous pilocarpine-HCl solutions. J Pharm Sci. 1997;86(6):716–20. doi:10.1021/js960389h.

    Article  CAS  PubMed  Google Scholar 

  3. Masson M, Loftsson T, Masson G, Stefansson E. Cyclodextrins as permeation enhancers: some theoretical evaluations and in vitro testing. J Control Release. 1999;59(1):107–18.

    Article  CAS  PubMed  Google Scholar 

  4. Higuchi T, Connors KA. Phase-solubility techniques. Advan Anal Chem. 1965;4:117–212.

    CAS  Google Scholar 

  5. Salem LB, Bosquillon C, Dailey LA, Delattre L, Martin GP, Evrard B, et al. Sparing methylation of beta-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release. 2009;136(2):110–6. doi:10.1016/j.jconrel.2009.01.019.

    Article  CAS  PubMed  Google Scholar 

  6. Duchene D, Wouessijewe D, Poelman MC. New Trends in Cyclodextrins and Derivatives. Paris 1991.

  7. Van Der Bijl P, Engelbrecht AH, Van Eyk AD, Meyer D. Comparative permeability of human and rabbit corneas to cyclosporin and tritiated water. J Ocul Pharmacol Ther. 2002;18(5):419–27. doi:10.1089/10807680260362704.

    Article  Google Scholar 

  8. Lopez CA, de Vries AH, Marrink SJ. Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep. 2013;3:2071. doi:10.1038/srep02071.

    PubMed Central  PubMed  Google Scholar 

  9. Williams 3rd RO, Mahaguna V, Sriwongjanya M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-beta-cyclodextrin. Eur J Pharm Biopharm. 1998;46(3):355–60.

    Article  CAS  PubMed  Google Scholar 

  10. Lopez CA, de Vries AH, Marrink SJ. Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol. 2011;7(3):e1002020. doi:10.1371/journal.pcbi.1002020.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tsamaloukas A, Szadkowska H, Slotte PJ, Heerklotz H. Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys J. 2005;89(2):1109–19. doi:10.1529/biophysj.105.061846.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Duncker G, Reichelt J. Effects of the pharmaceutical cosolvent hydroxypropyl-beta-cyclodextrin on porcine corneal endothelium. Graefes Arch Clin Exp Ophthalmol. 1998;236(5):380–9.

    Article  CAS  PubMed  Google Scholar 

  13. Huang AJ, Tseng SC, Kenyon KR. Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci. 1989;30(4):684–9.

    CAS  PubMed  Google Scholar 

  14. Hippalgaonkar K, Adelli GR, Repka MA, Majumdar S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther. 2013;29(2):216–28. doi:10.1089/jop.2012.0069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hippalgaonkar K, Gul W, ElSohly MA, Repka MA, Majumdar S. Enhanced solubility, stability, and transcorneal permeability of delta-8-tetrahydrocannabinol in the presence of cyclodextrins. AAPS PharmSciTech. 2011;12(2):723–31. doi:10.1208/s12249-011-9639-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Loftssona T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev. 1999;36(1):59–79.

    Article  CAS  PubMed  Google Scholar 

  17. Reer O, Bock TK, Muller BW. In vitro corneal permeability of diclofenac sodium in formulations containing cyclodextrins compared to the commercial product voltaren ophtha. J Pharm Sci. 1994;83(9):1345–9.

    Article  CAS  PubMed  Google Scholar 

  18. Tirucherai GS, Mitra AK. Effect of hydroxypropyl beta cyclodextrin complexation on aqueous solubility, stability, and corneal permeation of acyl ester prodrugs of ganciclovir. AAPS PharmSciTech. 2003;4(3):E45. doi:10.1208/pt040345.

    Article  PubMed  Google Scholar 

  19. Siefert B, Pleyer U, Muller M, Hartmann C, Keipert S. Influence of cyclodextrins on the in vitro corneal permeability and in vivo ocular distribution of thalidomide. J Ocul Pharmacol Ther. 1999;15(5):429–38.

    Article  CAS  PubMed  Google Scholar 

  20. Bozkir A, Denli ZF, Basaran B. Effect of hydroxypropyl-beta-cyclodextrin on the solubility, stability and in-vitro release of ciprofloxacin for ocular drug delivery. Acta Pol Pharm. 2012;69(4):719–24.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by the National Institute of General Medical Sciences, National Institutes of Health Grant P20GM104932 and SBAHQ-10-I-0309. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Majumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelli, G.R., Balguri, S.P. & Majumdar, S. Effect of Cyclodextrins on Morphology and Barrier Characteristics of Isolated Rabbit Corneas. AAPS PharmSciTech 16, 1220–1226 (2015). https://doi.org/10.1208/s12249-015-0315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0315-z

KEY WORDS

Navigation