Skip to main content

Advertisement

Log in

Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed to fabricate mucoadhesive electrospun nanofiber mats containing α-mangostin for the maintenance of oral hygiene and reduction of the bacterial growth that causes dental caries. Synthesized thiolated chitosan (CS-SH) blended with polyvinyl alcohol (PVA) was selected as the mucoadhesive polymer. α-Mangostin was incorporated into the CS-SH/PVA solution and electrospun to obtain nanofiber mats. Scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and tensile strength testing were used to characterize the mats. The swelling degree and mucoadhesion were also determined. The nanofiber mats were further evaluated regarding their α-mangostin content, in vitro α-mangostin release, antibacterial activity, cytotoxicity, in vivo performance, and stability. The results indicated that the mats were in the nanometer range. The α-mangostin was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength, swelling, and mucoadhesive properties. The loading capacity increased when the initial amount of α-mangostin was increased. Rapid release of α-mangostin from the mats was achieved. Additionally, a fast bacterial killing rate occurred at the lowest concentration of nanofiber mats when α-mangostin was added to the mats. The mats were less cytotoxic after use for 72 h. Moreover, in vivo testing indicated that the mats could reduce the number of oral bacteria, with a good mouth feel. The mats maintained the amount of α-mangostin for 6 months. The results suggest that α-mangostin-loaded mucoadhesive electrospun nanofiber mats may be a promising material for oral care and the prevention of dental caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Wang W, Tao R, Tong Z, Ding Y, Kuang R, Zhai S, et al. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides. 2012;33:212–9.

    Article  CAS  PubMed  Google Scholar 

  2. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Quivey RG, Kuhnert WL, Hahn K. Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med. 2001;12:301–14.

    Article  CAS  PubMed  Google Scholar 

  4. Kim JE, Kim HE, Hwang JK, Lee HJ, Kwon HK, Kim BI. Antibacterial characteristics of Curcuma xanthorrhiza extract on Streptococcus mutans biofilm. J Microbiol. 2008;46(2):228–32.

    Article  PubMed  Google Scholar 

  5. Keohane J, Ryan K, Shanahan R. Lactobacillus in gastrointestinal tract. In: Ljungh A, Wadstrom T, editors. Lactobacillus molecular biology: from genomics to probiotics. Norfolk: Caister Academic Press; 2009. p. 169–82.

    Google Scholar 

  6. American Academy of Pediatric Dentistry, Pediatric dentistry, Reference manual 2009–2010;31(6):10.

  7. Ashkenazi M, Bidoosi M, Levin L. Factors associated with reduced compliance of children to dental preventive measures. Odontology. 2012;100:241–8.

    Article  PubMed  Google Scholar 

  8. Sakagami Y, Iinuma M, Piyasena KGNP, Dharmaratne HRW. Antibacterial activity of α-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine. 2005;12:203–8.

    Article  CAS  PubMed  Google Scholar 

  9. Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N. Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia. 2009;80:102–4.

    Article  CAS  PubMed  Google Scholar 

  10. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.

    Article  CAS  PubMed  Google Scholar 

  11. Langoth N, Kahlbacher H, Schöffmann G, Schmerold I, Schuh M, Franz S, et al. Thiolated chitosans: design and in-vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm Res. 2006;23(3):573–9.

    Article  CAS  PubMed  Google Scholar 

  12. Bernkop-Schnürch A, Hornof M, Guggi D. Thiolated chitosans. Eur J Pharm Biopharm. 2004;57:9–17.

    Article  PubMed  Google Scholar 

  13. Langoth N, Kalbe J, Bernkop-Schnürch A. Development of buccal drug delivery systems based on a thiolated polymer. Int J Pharm. 2003;252:141–8.

    Article  CAS  PubMed  Google Scholar 

  14. Marschütz MK, Bernkop-Schnürch A. Thiolated polymers: self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion. Eur J Pharm Sci. 2002;15:387–94.

    Article  PubMed  Google Scholar 

  15. Samprasit W, Kaomongkolgit R, Sukma M, Rojanarata T, Ngawhirunpat T, Opanasopit P. Mucoadhesive electrospun chitosan-based nanofiber mats for dental caries prevention. Carbohydr Polym. 2015;117:933–40.

    Article  CAS  PubMed  Google Scholar 

  16. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77:187–99.

    Article  CAS  PubMed  Google Scholar 

  17. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  18. Kaomongkolgit R, Jamdee K, Chaisomboon N. Antifungal activity of alpha-mangostin against Candida albicans. J Oral Sci. 2009;51(3):401–6.

    Article  CAS  PubMed  Google Scholar 

  19. Schmitz T, Grabovac V, Palmberger TF, Hoffer MH, Bernkop-Schnürch A. Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate. Int J Pharm. 2008;347:79–85.

    Article  CAS  PubMed  Google Scholar 

  20. Thirawong N, Nunthanid J, Puttipipatkhachorn S, Sriamornsak P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in-vitro evaluation using texture analyzer. Eur J Pharm Biopharm. 2007;67:132–40.

    Article  CAS  PubMed  Google Scholar 

  21. Pothitirat W, Chomnawang MT, Supabphol R, Gritsanapan W. Comparison of bioactive compounds content, free radical scavenging and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity. Fitoterapia. 2009;80:442–7.

    Article  CAS  PubMed  Google Scholar 

  22. Hadjiioannou T, Christian G, Koupparis M, Macheras P. Quantitative calculations in pharmaceutical practice and research. New York: VCH Publishers Inc; 1993.

    Google Scholar 

  23. Bourne D. Pharmacokinetics. In: Banker G, Rhodes C, editors. Modern pharmaceutics. New York: Marcel Dekker Inc.; 2002. p. 67–92.

    Google Scholar 

  24. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  25. Jorgensen JH, Turnidge JD. Antibacterial susceptibility tests: dilution and disk diffusion methods. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. Manual of clinical microbiology. Washington DC: American Society for Microbiology; 2007. p. 1152–72.

    Google Scholar 

  26. Hindler JA. Special antimicrobial susceptibility test. In: Mahon CR, Manuselis G, editors. Textbook of the diagnostic microbiology. Philadelphia: WB Saunders; 2000. p. 97–104.

    Google Scholar 

  27. Sreenivas SA, Pai KV. Thiolated chitosans: novel polymers for mucoadhesive drug delivery—a review. Trop J Pharm Res. 2008;7(3):1077–88.

    Article  Google Scholar 

  28. Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913–22.

    Article  CAS  Google Scholar 

  29. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  PubMed  Google Scholar 

  30. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43:4403–12.

    Article  CAS  Google Scholar 

  31. Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57:1556–68.

    Article  CAS  PubMed  Google Scholar 

  32. Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666–91.

    Article  CAS  PubMed  Google Scholar 

  33. Aisha AFA, Ismail Z, Abu-Salah KM, Majid AMSA. Solid dispersions of α-mangostin improve its aqueous solubility through self-assembly of nanomicelles. J Pharm Sci. 2012;101:815–25.

    Article  CAS  PubMed  Google Scholar 

  34. Sill TJ, Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  CAS  PubMed  Google Scholar 

  35. Nagy ZK, Nyúl K, Wagner I, Molnár K, Marosi G. Electrospun water soluble polymer mat for ultrafast release of Donepezil HCl. Express Polym Lett. 2010;4(12):763–72.

    Article  CAS  Google Scholar 

  36. Tong Z, Zhou L, Li J, Jiang W, Ma L, Ni L. In-vitro evaluation of the antibacterial activities of MTAD in combination with Nisin against Enterococcus faecalis. J Endod. 2011;37:1116–20.

    Article  PubMed  Google Scholar 

  37. Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, et al. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta. 2013;1828:834–44.

    Article  CAS  PubMed  Google Scholar 

  38. El-Sharif AA, Hussain MHM. Chitosan–EDTA new combination is a promising candidate for treatment of bacterial and fungal infections. Curr Microbiol. 2011;62:739–45.

    Article  CAS  PubMed  Google Scholar 

  39. Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006;72(3):2064–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother. 2006;50:1480–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Li F, Weir MD, Fouad AF, Xu HHK. Time-kill behaviour against eight bacterial species and cytotoxicity of antibacterial monomers. J Dent. 2013;41:881–91.

    Article  CAS  PubMed  Google Scholar 

  42. Schürer N, Köhne A, Schliep V, Barlag K, Goerz G. Lipid composition and synthesis of HaCaT cells, an immortalized human keratinocyte line, in comparison with normal human adult keratinocytes. Exp Dermatol. 1993;2(4):179–85.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Commission of Higher Education (Thailand), the Thailand Research Funds through the Royal Golden Jubilee PhD Program (Grant No. PHD/0001/2553) and the Silpakorn University Research and Development Institute for financial support, Associate Professor Suchada Chutimaworapan for her support, and Ms Kusuma Jamdee and Ms Niratcha Chaisomboon for technical guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruchadaporn Kaomongkolgit or Praneet Opanasopit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samprasit, W., Rojanarata, T., Akkaramongkolporn, P. et al. Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin. AAPS PharmSciTech 16, 1140–1152 (2015). https://doi.org/10.1208/s12249-015-0300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0300-6

KEY WORDS

Navigation