Skip to main content
Log in

Bilayer Matrix Tablets for Prolonged Actions of Metformin Hydrochloride and Repaglinide

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A combination therapy of metformin hydrochloride (MH) and repaglinide (RG) achieves a perfect glycemic control; however, the combination formulation of immediate release must be taken several times a day, compromising the therapeutic benefits and causing inconveniences to the patients. Herein, a bilayer matrix tablet that aimed at continuously releasing both MH and RG over time was developed, in which the two drugs were formulated into two separated layers. The tablets were prepared by wet granulation method, and the optimized formulation was obtained by evaluating the factors that affected the drug release. The bilayer tablets simultaneously released the two drugs over 12 h; and a better in vivo performance with a steady plasma concentration, markedly lower C max, prolonged T max, and perfect absorption was obtained. Summarily, the bilayer matrix tablets sustained both MH and RG release over time, thereby prolonging the actions for diabetic therapy and producing better health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Berardis G, Dttorre A, Graziano G, Lucisano G, Pellegrini F, Cammarota S, et al. The burden of hospitalization related to diabetes mellitus: a population-based study. Nutr Metab Cardiovasc. 2013;22(7):605–12.

    Article  Google Scholar 

  2. Zuo H, Shi Z, Hussain A. Prevalence, trends and risk factors for the diabetes epidemic in China: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014;103(2):176–85.

    Article  Google Scholar 

  3. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract. 2014;103(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  4. Tucker GT, Casey C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Thomas CR, Turner SL, Jefferson WH, Bailey CJ. Prevention of dexamethasone-induced insulin resistance by metformin. Biochem Pharmacol. 1998;56(9):1145–450.

    Article  CAS  PubMed  Google Scholar 

  6. Wolffenbuttel BHR. Repaglinide: a new compound for the treatment of patients with type 2 diabetes. Neth J Med. 1999;55(5):229–34.

    Article  CAS  PubMed  Google Scholar 

  7. Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, et al. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism. 2003;52(7):862–7.

    Article  CAS  PubMed  Google Scholar 

  8. Dailey GE. Glyburide/metformin tablets: a new therapeutic option for the management of type 2 diabetes. Expert Opin Pharmaco. 2003;4(8):1417–30.

    Article  CAS  Google Scholar 

  9. Scott LJ. Repaglinide: a review of its use in type 2 diabetes mellitus. Drugs. 2012;72(2):249–72.

    Article  PubMed  Google Scholar 

  10. Dhana lekshmi UM, Poovi G, Kishore N, Reddy PN. In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. Int J Pharm. 2010;396(1–2):194–203.

    Article  CAS  PubMed  Google Scholar 

  11. Lalau JD, Azzoug ML, Kajbaf F, Briet C, Desailloud R. Metformin accumulation without hyperlactataemia and metformin-induced hyperlactataemia without metformin accumulation. Diabetes Metab. 2014;40(3):220–3.

    Article  CAS  PubMed  Google Scholar 

  12. Klinzing G, Zavaliangos A. Understanding the effect of environmental history on bilayer tablet interfacial shear strength. Pharm Res. 2013;30(5):1300–10.

    Article  CAS  PubMed  Google Scholar 

  13. Abebe A, Akseli I, Sprockel O, Kottala N, Cuitino AM. Review of bilayer tablet technology. Int J Pharm. 2014;461(1–2):549–58.

    Article  CAS  PubMed  Google Scholar 

  14. Qin C, He W, Zhu C, Wu M, Jin Z, Zhang Q, et al. Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet. Int J Pharm. 2014;466(1–2):276–85.

    Article  CAS  PubMed  Google Scholar 

  15. Yin LF, Huang SJ, Zhu CL, Zhang SH, Zhang Q, Chen XJ, et al. In vitro and in vivo studies on a novel solid dispersion of repaglinide using polyvinylpyrrolidone as the carrier. Drug Dev Ind Pharm. 2012;38(11):1371–80.

    Article  CAS  PubMed  Google Scholar 

  16. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  17. Wu B, Deng D, Lu Y, Wu W. Biphasic release of indomethacin from HPMC/pectin/calcium matrix tablet: II. Influencing variables, stability and pharmacokinetics in dogs. Eur J Pharm Biopharm. 2008;69(1):294–302.

    Article  CAS  PubMed  Google Scholar 

  18. Chambin O, Champion D, Debray C, Rochat-Gonthier MH, Le Meste M, Pourcelot Y. Effects of different cellulose derivatives on drug release mechanism studied at a preformulation stage. J Control Release. 2004;95(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  19. Grund J, Körberr M, Bodmeier R. Predictability of drug release from water-insoluble polymeric matrix tablets. Eur J Pharm Biopharm. 2013;85(3):650–5.

    Article  CAS  PubMed  Google Scholar 

  20. Rujivipat S, Bodmeier R. Modified release from hydroxypropyl methylcellulose compression-coated tablets. Int J Pharm. 2010;402(1–2):72–7.

    Article  CAS  PubMed  Google Scholar 

  21. Quinten T, Gonnissen Y, Adriaens E, Beer TD, Cnudde V, Masschaele B, et al. Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose. Eur J Pharm Sci. 2009;37(3–4):207–16.

    Article  CAS  PubMed  Google Scholar 

  22. Sotthivirat S, Haslam JL, Lee PI, Rao VM, Stella VJ. Release mechanisms of a sparingly water-soluble drug from controlled porosity-osmotic pump pellets using sulfobutylether-beta-cyclodextrin as both a solubilizing and osmotic agent. J Pharm Sci. 2009;98(6):1992–2000.

    Article  CAS  PubMed  Google Scholar 

  23. Palmer D, Levina M, Nokhodchi A, Douroumis D, Farrell T, Rajabi-Siahboomi A. The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech. 2011;12(3):862–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Conti S, Maggi L, Segale L, Ochoa Machiste E, Conte U, Grenier P, et al. Matrices containing NaCMC and HPMC 1. Dissolution performance characterization. Int J Pharm. 2007;333(1–2):136–42.

    Article  CAS  PubMed  Google Scholar 

  25. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154(1):2–19.

    Article  CAS  PubMed  Google Scholar 

  26. Vaidya MP, Avachat AM. Investigation of the impact of insoluble diluents on the compression and release properties of matrix based sustained release tablets. Powder Technol. 2011;214(3):375–81.

    Article  CAS  Google Scholar 

  27. Fuertes I, Caraballo I, Miranda A, Milln M. Study of critical points of drugs with different solubilities in hydrophilic matrices. Int J Pharm. 2010;383(1–2):138–46.

    Article  CAS  PubMed  Google Scholar 

  28. Mandi Z, Gabelica V. Ionization, lipophilicity and solubility properties of repaglinide. J Pharm Biomed Anal. 2006;41(3):866–71.

    Article  Google Scholar 

  29. American Chemical Society. 2014. https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf.

  30. Bettini R, Catellani PL, Santi P, Massimo G, Peppas NA, Colombo P. Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J Control Release. 2001;70(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  31. Vidon N, Chaussade S, Noel M, Franchisseur C, Huchet B, Bernier JJ. Metformin in the digestive tract. Diabetes Res Clin Pract. 1988;4(3):223–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nayak AK, Pal D, Santra K. Tamarind seed polysaccharide-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr Polym. 2014;103:154–63.

    Article  CAS  PubMed  Google Scholar 

  33. Kortejrvi H, Mikkola J, Bckman M, Antila S, Marvola M. Development of level A, B and C in vitro–in vivo correlations for modified-release levosimendan capsules. Int J Pharm. 2002;241(1):87–95.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Creation of Major New Drugs national major projects (2011ZX09202-101-24, 2012ZX09202101-008, 2014ZX09507004-001), and the “333” High Level Talents Cultivation Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Yin.

Additional information

W. He, S.J. Huang, and C.Y. Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Huang, S., Zhou, C. et al. Bilayer Matrix Tablets for Prolonged Actions of Metformin Hydrochloride and Repaglinide. AAPS PharmSciTech 16, 344–353 (2015). https://doi.org/10.1208/s12249-014-0229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0229-1

KEY WORDS

Navigation