Skip to main content

Advertisement

Log in

Polymeric Micelles: Nanocarriers for Cancer-Targeted Drug Delivery

  • Review Article
  • Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10–100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  CAS  PubMed  Google Scholar 

  2. Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2(9):979–82.

    Article  CAS  Google Scholar 

  3. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.

    Article  CAS  PubMed  Google Scholar 

  4. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–88.

    Article  CAS  PubMed  Google Scholar 

  5. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24(6):1029–46.

    Article  CAS  PubMed  Google Scholar 

  6. Choucair A, Eisenberg A. Control of amphiphilic block copolymer morphologies using solution conditions. Eur Phys J E Soft Matter. 2003;10(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  7. Yu Y, Zhang L, Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates of amphiphilic diblock copolymers. Macromolecules. 1998;31(4):1144–54.

    Article  CAS  Google Scholar 

  8. Shen H, Zhang L, Eisenberg A. Multiple pH-induced morphological changes in aggregates of polystyrene-block-poly(4-vinylpyridine) in DMF/H2O mixtures. J Am Chem Soc. 1999;121(12):2728–40.

    Article  CAS  Google Scholar 

  9. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Benahmed A, Ranger M, Leroux JC. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D, L-lactide). Pharm Res. 2001;18(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  11. Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Control Release. 1998;53(1–3):119–30.

    Article  CAS  PubMed  Google Scholar 

  12. Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv. 2010;7(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  13. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–16.

    Article  CAS  PubMed  Google Scholar 

  14. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108(2):241–50.

    Article  CAS  PubMed  Google Scholar 

  15. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18(12):2009–14.

    Article  PubMed  Google Scholar 

  16. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer. 2007;97(2):170–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer. 2004;90(11):2085–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91(10):1775–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Trubetskoy VS, Torchilin VP. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev. 1995;16(2–3):311–20.

    Article  CAS  Google Scholar 

  20. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  CAS  PubMed  Google Scholar 

  21. Musacchio T, Laquintana V, Latrofa A, Trapani G, Torchilin VP. PEG-PE micelles loaded with paclitaxel and surface-modified by a PBR-ligand: synergistic anticancer effect. Mol Pharm. 2009;6(2):468–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mu L, Chrastina A, Levchenko T, Torchilin VP. Micelles from poly(ethylene glycol) phosphatidyl ethanolamine conjugates (PEG-PE) as pharmaceutical nanocarriers for poorly soluble drug camptothecin. J Biomed Nanotechnol. 2005;1(2):190–5.

    Article  CAS  Google Scholar 

  23. Wang J, Mongayt DA, Lukyanov AN, Levchenko TS, Torchilin VP. Preparation and in vitro synergistic anticancer effect of vitamin K3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int J Pharm. 2004;272(1–2):129–35.

    Article  CAS  PubMed  Google Scholar 

  24. Lukyanov AN, Gao Z, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res. 2002;19(10):1424–9.

    Article  CAS  PubMed  Google Scholar 

  25. Parr MJ, Masin D, Cullis PR, Bally MB. Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol). J Pharmacol Exp Ther. 1997;280(3):1319–27.

    CAS  PubMed  Google Scholar 

  26. Weissig V, Whiteman KR, Torchilin VP. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice. Pharm Res. 1998;15(10):1552–6.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30(30):6006–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xiao K, Luo J, Li Y, Lee JS, Fung G, Lam KS. PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J Control Release. 2011;155(2):272–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Lee H, Allen C. Formulation of drugs in block copolymer micelles: drug loading and release. Curr Pharm Des. 2006;12(36):4685–701.

    Article  CAS  PubMed  Google Scholar 

  31. Latere Dwan’Isa JP, Rouxhet L, Preat V, Brewster ME, Arien A. Prediction of drug solubility in amphiphilic di-block copolymer micelles: the role of polymer-drug compatibility. Pharmazie. 2007;62(7):499–504.

    PubMed  Google Scholar 

  32. Coffman R, Kildsig D. Hydrotropic solubilization—mechanistic studies. Pharm Res. 1996;13(10):1460–3.

    Article  CAS  PubMed  Google Scholar 

  33. Bauduin P, Renoncourt A, Kopf A, Touraud D, Kunz W. Unified concept of solubilization in water by hydrotropes and cosolvents. Langmuir. 2005;21(15):6769–75.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JY, Kim S, Papp M, Park K, Pinal R. Hydrotropic solubilization of poorly water-soluble drugs. J Pharm Sci. 2010;99(9):3953–65.

    CAS  PubMed  Google Scholar 

  35. Cui Y. Parallel stacking of caffeine with riboflavin in aqueous solutions: the potential mechanism for hydrotropic solubilization of riboflavin. Int J Pharm. 2010;397(1–2):36–43.

    Article  CAS  PubMed  Google Scholar 

  36. Ooya T, Lee S, Huh K, Park K. Hydrotropic nanocarriers for poorly soluble drugs. In: Mozafari MR, editor. Nanocarrier technologies. Netherlands: Springer; 2006. p. 51–73.

    Chapter  Google Scholar 

  37. Landauer J, McConnell H. A study of molecular complexes formed by aniline and aromatic nitrohydrocarbons. J Am Chem Soc. 1952;74(5):1221–4.

    Article  CAS  Google Scholar 

  38. Charman W, Lai C, Craik D, Finnin B, Reed B. Self-association of nicotinamide in aqueous-solution: N.M.R. studies of nicotinamide and the mono- and di-methyl-substituted amide analogs. Aust J Chem. 1993;46(3):377–85.

    Article  CAS  Google Scholar 

  39. Rasool AA, Hussain AA, Dittert LW. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. J Pharm Sci. 1991;80(4):387–93.

    Article  CAS  PubMed  Google Scholar 

  40. Sanghvi R, Evans D, Yalkowsky SH. Stacking complexation by nicotinamide: a useful way of enhancing drug solubility. Int J Pharm. 2007;336(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  41. Lee J, Lee SC, Acharya G, Chang CJ, Park K. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm Res. 2003;20(7):1022–30.

    Article  CAS  PubMed  Google Scholar 

  42. da Silva RC, Spitzer M, da Silva LHM, Watson L. Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes. Thermochim Acta. 1999;328(1–2):161–7.

    Article  CAS  Google Scholar 

  43. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101(1–3):59–68.

    Article  CAS  PubMed  Google Scholar 

  44. Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release. 2011;152(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  45. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21(11):2001–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kim SH, Tan JP, Nederberg F, Fukushima K, Colson J, Yang C, et al. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials. 2010;31(31):8063–71.

    Article  CAS  PubMed  Google Scholar 

  47. Yang C, Attia AB, Tan JP, Ke X, Gao S, Hedrick JL, et al. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials. 2012;33(10):2971–9.

    Article  CAS  PubMed  Google Scholar 

  48. Giacomelli C, Schmidt V, Borsali R. Specific interactions improve the loading capacity of block copolymer micelles in aqueous media. Langmuir. 2007;23(13):6947–55.

    Article  CAS  PubMed  Google Scholar 

  49. Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K. Introduction of cisplatin into polymeric micelle. J Control Release. 1996;39(2–3):351–6.

    Article  CAS  Google Scholar 

  50. Nishiyama N, Kato Y, Sugiyama Y, Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res. 2001;18(7):1035–41.

    Article  CAS  PubMed  Google Scholar 

  51. Carstens MG, de Jong PH, van Nostrum CF, Kemmink J, Verrijk R, de Leede LG, et al. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm. 2008;68(3):596–606.

    Article  CAS  PubMed  Google Scholar 

  52. Gao X, Huang Y, Makhov AM, Epperly M, Lu J, Grab S, et al. Nanoassembly of surfactants with interfacial drug-interactive motifs as tailor-designed drug carriers. Mol Pharm. 2013;10(1):187–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zhang P, Lu J, Huang Y, Zhao W, Zhang Y, Zhang X, et al. Design and evaluation of a PEGylated lipopeptide equipped with drug-Interactive motifs as an improved drug carrier. AAPS J. 2014;16(1):114–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12(36):4669–84.

    Article  CAS  PubMed  Google Scholar 

  55. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Pol Sym. 1975;51(1):135–53.

    Article  CAS  Google Scholar 

  56. Broxterman HJ, Georgopapadakou NH. Anticancer therapeutics: “Addictive” targets, multi-targeted drugs, new drug combinations. Drug Resist Updat. 2005;8(4):183–97.

    Article  CAS  PubMed  Google Scholar 

  57. Verschraegen CF, Skubitz K, Daud A, Kudelka AP, Rabinowitz I, Allievi C, et al. A phase I and pharmacokinetic study of paclitaxel poliglumex and cisplatin in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2009;63(5):903–10.

    Article  CAS  PubMed  Google Scholar 

  58. Langer CJ, O’Byrne KJ, Socinski MA, Mikhailov SM, Lesniewski-Kmak K, Smakal M, et al. Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol. 2008;3(6):623–30.

    Article  PubMed  Google Scholar 

  59. Shiah JG, Sun Y, Kopečková P, Peterson CM, Straight RC, Kopeček J. Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer–doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates. J Control Release. 2001;74(1–3):249–53.

    Article  CAS  PubMed  Google Scholar 

  60. Mi Y, Liu Y, Feng SS. Formulation of docetaxel by folic acid-conjugated D-alpha-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2K)) micelles for targeted and synergistic chemotherapy. Biomaterials. 2011;32(16):4058–66.

    Article  CAS  PubMed  Google Scholar 

  61. Dong Y, Feng SS. Poly(d, l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(30):6068–76.

    Article  CAS  PubMed  Google Scholar 

  62. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J Control Release. 2002;80(1–3):129–44.

    Article  CAS  PubMed  Google Scholar 

  63. Yu L, Bridgers A, Polli J, Vickers A, Long S, Roy A, et al. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm Res. 1999;16(12):1812–7.

    Article  CAS  PubMed  Google Scholar 

  64. Muthu MS, Kulkarni SA, Xiong J, Feng SS. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int J Pharm. 2011;421(2):332–40.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Z, Feng SS. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials. 2006;27(2):262–70.

    Article  PubMed  CAS  Google Scholar 

  66. Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm. 2010;7(3):863–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6.

    Article  CAS  PubMed  Google Scholar 

  68. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4–5):445–53.

    Article  CAS  PubMed  Google Scholar 

  69. Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials. 2008;29(28):3856–65.

    Article  CAS  PubMed  Google Scholar 

  70. Xu H, Abe H, Naito M, Fukumori Y, Ichikawa H, Endoh S, et al. Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Adv Powder. 2010;21(5):551–5.

    Article  CAS  Google Scholar 

  71. Yan A, Von Dem Bussche A, Kane AB, Hurt RH. Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon. 2007;45(13):2463–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Chandrasekharan P, Maity D, Yong CX, Chuang KH, Ding J, Feng SS. Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials. 2011;32(24):5663–72.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  PubMed  Google Scholar 

  74. Mu L, Elbayoumi TA, Torchilin VP. Mixed micelles made of poly(ethylene glycol)–phosphatidylethanolamine conjugate and d-α-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm. 2005;306(1–2):142–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Chandran T, Katragadda U, Teng Q, Tan C. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG). Int J Pharm. 2010;392(1–2):170–7.

    Article  CAS  PubMed  Google Scholar 

  76. Gao Y, Li LB, Zhai G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B: Biointerfaces. 2008;64(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao L, Shi Y, Zou S, Sun M, Lil L, Zhail G. Formulation and in vitro evaluation of quercetin loaded polymeric micelles composed of pluronic P123 and D-a-tocopheryl polyethylene glycol succinate. J Biomed Nanotechnol. 2011;7(3):358–65.

    Article  CAS  PubMed  Google Scholar 

  78. Wang J, Wang R, Li LB. Preparation and properties of hydroxycamptothecin-loaded nanoparticles made of amphiphilic copolymer and normal polymer. J Colloid Interface Sci. 2009;336(2):808–13.

    Article  CAS  PubMed  Google Scholar 

  79. Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, et al. Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials. 2012;33(28):6877–88.

    Article  CAS  PubMed  Google Scholar 

  80. Lu J, Huang Y, Zhao W, Chen Y, Li J, Gao X, et al. Design and characterization of PEG-derivatized vitamin E as a nanomicellar formulation for delivery of paclitaxel. Mol Pharm. 2013;10(8):2880–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem. 2004;47(10):2430–40.

    Article  CAS  PubMed  Google Scholar 

  82. Bhandari U, Jain N, Pillai KK. Further studies on antioxidant potential and protection of pancreatic beta-cells by Embelia ribes in experimental diabetes. Exp Diabetes Res. 2007;2007:15803.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Chitra M, Sukumar E, Suja V, Devi CS. Antitumor, anti-inflammatory and analgesic property of embelin, a plant product. Chemotherapy. 1994;40(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  84. Singh D, Singh R, Singh P, Gupta RS. Effects of embelin on lipid peroxidation and free radical scavenging activity against liver damage in rats. Basic Clin Pharmacol Toxicol. 2009;105(4):243–8.

    Article  CAS  PubMed  Google Scholar 

  85. Li Y, Li D, Yuan S, Wang Z, Tang F, Nie R, et al. Embelin-induced MCF-7 breast cancer cell apoptosis and blockade of MCF-7 cells in the G2/M phase via the mitochondrial pathway. Oncol Lett. 2013;5(3):1005–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Dai Y, Qiao L, Chan KW, Yang M, Ye J, Ma J, et al. Peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of Embelin on colon carcinogenesis. Cancer Res. 2009;69(11):4776–83.

    Article  CAS  PubMed  Google Scholar 

  87. Danquah M, Li F, Duke 3rd CB, Miller DD, Mahato RI. Micellar delivery of bicalutamide and embelin for treating prostate cancer. Pharm Res. 2009;26(9):2081–92.

    Article  CAS  PubMed  Google Scholar 

  88. Mori T, Doi R, Kida A, Nagai K, Kami K, Ito D, et al. Effect of the XIAP inhibitor Embelin on TRAIL-induced apoptosis of pancreatic cancer cells. J Surg Res. 2007;142(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  89. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6(5):1796–803.

    CAS  PubMed  Google Scholar 

  90. Berezovskaya O, Schimmer AD, Glinskii AB, Pinilla C, Hoffman RM, Reed JC, et al. Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res. 2005;65(6):2378–86.

    Article  CAS  PubMed  Google Scholar 

  91. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, et al. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res. 2009;69(6):2425–34.

    Article  CAS  PubMed  Google Scholar 

  92. Ahn KS, Sethi G, Aggarwal BB. Embelin, an inhibitor of X chromosome-linked inhibitor-of-apoptosis protein, blocks nuclear factor-kappaB (NF-kappaB) signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Mol Pharmacol. 2007;71(1):209–19.

    Article  CAS  PubMed  Google Scholar 

  93. Huang Y, Lu J, Gao X, Li J, Zhao W, Sun M, et al. PEG-derivatized embelin as a dual functional carrier for the delivery of paclitaxel. Bioconjug Chem. 2012;23(7):1443–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Lu J, Huang Y, Zhao W, Marquez RT, Meng X, Li J, et al. PEG-derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials. 2013;34(5):1591–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Weisz B, Giehl K, Gana-Weisz M, Egozi Y, Ben-Baruch G, Marciano D, et al. A new functional Ras antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene. 1999;18(16):2579–88.

    Article  CAS  PubMed  Google Scholar 

  96. Grewal T, Koese M, Tebar F, Enrich C. Differential regulation of RasGAPs in cancer. Genes Cancer. 2011;2(3):288–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.

    CAS  PubMed  Google Scholar 

  98. Downward J. Targeting RAS, signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  99. Halaschek-Wiener J, Wacheck V, Schlagbauer-Wadl H, Wolff K, Kloog Y, Jansen B. A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol Med. 2000;6(8):693–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Jansen B, Schlagbauer-Wadl H, Kahr H, Heere-Ress E, Mayer BX, Eichler H, et al. Novel Ras antagonist blocks human melanoma growth. Proc Natl Acad Sci U S A. 1999;96(24):14019–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res. 2006;12(18):5533–42.

    Article  CAS  PubMed  Google Scholar 

  102. Blum R, Kloog Y. Tailoring Ras-pathway–inhibitor combinations for cancer therapy. Drug Resist Updat. 2005;8(6):369–80.

    Article  CAS  PubMed  Google Scholar 

  103. Gana-Weisz M, Halaschek-Wiener J, Jansen B, Elad G, Haklai R, Kloog Y. The Ras inhibitor S-trans, trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin Cancer Res. 2002;8(2):555–65.

    CAS  PubMed  Google Scholar 

  104. Zhang X, Lu J, Huang Y, Zhao W, Chen Y, Li J, et al. PEG-farnesylthiosalicylate conjugate as a nanomicellar carrier for delivery of paclitaxel. Bioconjug Chem. 2013;24(3):464–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–98.

    CAS  PubMed  Google Scholar 

  106. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 2011;10:12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol. 2005;70(5):700–13.

    Article  CAS  PubMed  Google Scholar 

  108. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71(10):1397–421.

    Article  CAS  PubMed  Google Scholar 

  109. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.

    Article  CAS  PubMed  Google Scholar 

  110. Holy JM. Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells. Mutat Res. 2002;518(1):71–84.

    Article  CAS  PubMed  Google Scholar 

  111. Jiang MC, Yang-Yen HF, Yen JJ, Lin JK. Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer. 1996;26(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  112. Deeb D, Jiang H, Gao X, Al-Holou S, Danyluk AL, Dulchavsky SA, et al. Curcumin [1,7-Bis(4-hydroxy-3-methoxyphenyl)-1–6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-κB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther. 2007;321(2):616–25.

    Article  CAS  PubMed  Google Scholar 

  113. Holy J. Curcumin inhibits cell motility and alters microfilament organization and function in prostate cancer cells. Cell Motil Cytoskeleton. 2004;58(4):253–68.

    Article  CAS  PubMed  Google Scholar 

  114. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, et al. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome C and inhibition of Akt. Carcinogenesis. 2003;24(7):1199–208.

    Article  CAS  PubMed  Google Scholar 

  115. Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 2006;34(1–2):109–15.

    CAS  PubMed  Google Scholar 

  116. Anuchapreeda S, Limtrakul P, Thanarattanakorn P, Sittipreechacharn S, Chanarat P. Inhibitory effect of curcumin on WT1 gene expression in patient leukemic cells. Arch Pharm Res. 2006;29(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  117. Odot J, Albert P, Carlier A, Tarpin M, Devy J, Madoulet C. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer. 2004;111(3):381–7.

    Article  CAS  PubMed  Google Scholar 

  118. Yallapu MM, Jaggi M, Chauhan SC. beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B: Biointerfaces. 2010;79(1):113–25.

    Article  CAS  PubMed  Google Scholar 

  119. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79(3):330–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Shahani K, Panyam J. Highly loaded, sustained-release microparticles of curcumin for chemoprevention. J Pharm Sci. 2011;100(7):2599–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Zhang F, Koh GY, Jeansonne DP, Hollingsworth J, Russo PS, Vicente G, et al. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J Pharm Sci. 2011;100(7):2778–89.

    Article  CAS  PubMed  Google Scholar 

  122. Safavy A, Raisch KP, Mantena S, Sanford LL, Sham SW, Krishna NR, et al. Design and development of water-soluble curcumin conjugates as potential anticancer agents. J Med Chem. 2007;50(24):6284–8.

    Article  CAS  PubMed  Google Scholar 

  123. Tang H, Murphy CJ, Zhang B, Shen Y, Sui M, Van Kirk EA, et al. Amphiphilic curcumin conjugate-forming nanoparticles as anticancer prodrug and drug carriers: in vitro and in vivo effects. Nanomedicine (Lond). 2010;5(6):855–65.

    Article  CAS  Google Scholar 

  124. Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359(1):318–25.

    Article  CAS  PubMed  Google Scholar 

  125. Manju S, Sreenivasan K. Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone-curcumin conjugate. J Pharm Sci. 2011;100(2):504–11.

    Article  CAS  PubMed  Google Scholar 

  126. Yang R, Zhang S, Kong D, Gao X, Zhao Y, Wang Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res. 2012;29(12):3512–25.

    Article  CAS  PubMed  Google Scholar 

  127. Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res. 1991;51(12):3229–36.

    CAS  PubMed  Google Scholar 

  128. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Ekimoto H, Okamoto K, et al. composition-dependent in vivo antitumor activity of adriamycin-conjugated polymeric micelle against murine colon adenocarcinoma 26. Drug Deliv. 1993;1(1):11–9.

    Article  CAS  Google Scholar 

  129. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer-drug conjugates. Bioconjug Chem. 1992;3(4):295–301.

    Article  CAS  PubMed  Google Scholar 

  130. Yokoyama M, Okano T, Sakurai Y, Kataoka K. Improved synthesis of adriamycin-conjugated poly (ethylene oxide)-poly (aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Release. 1994;32(3):269–77.

    Article  CAS  Google Scholar 

  131. Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release. 1998;50(1–3):79–92.

    Article  CAS  PubMed  Google Scholar 

  132. Yang T, Wang Y, Li Z, Dai W, Yin J, Liang L, et al. Targeted delivery of a combination therapy consisting of combretastatin A4 and low-dose doxorubicin against tumor neovasculature. Nanomedicine. 2012;8(1):81–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants, RO1CA174305, R21CA173887, and R01GM102989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Additional information

Guest Editors: Mahavir B. Chougule and Chalet Tan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Huang, Y. & Li, S. Polymeric Micelles: Nanocarriers for Cancer-Targeted Drug Delivery. AAPS PharmSciTech 15, 862–871 (2014). https://doi.org/10.1208/s12249-014-0113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0113-z

KEY WORDS

Navigation