Skip to main content
Log in

Nano-extrusion: a One-Step Process for Manufacturing of Solid Nanoparticle Formulations Directly from the Liquid Phase

  • Rapid Communication
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This paper presents a novel one-step process for converting a liquid stabilized nano-suspension into a solid formulation via hot-melt extrusion combined with an internal devolatilization process (nano-extrusion, NANEX). A polymer (Soluplus®) was fed into the extruder and molten, after which a stable nano-suspension was added via side-feeding devices. The solvent (water) was removed by devolatilization and the polymer solidified at the outlet. The solid material can be tableted or filled in a capsule directly. The results showed that the obtained extrudates comprised nanocrystals in the de-aggregated form, confirming that a solid nano-formulation was prepared. This method is capable of overcoming many of the problems associated with other processes involving solid nano-dosage forms and poses a straightforward approach towards manufacturing such products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

REFERENCES

  1. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22.

    Article  CAS  PubMed  Google Scholar 

  2. Gardner CR, Walsh CT, Almarsson O. Drugs as materials: valuing physical form in drug discovery. Nat Rev Drug Discov. 2004;3:926–34.

    Article  CAS  PubMed  Google Scholar 

  3. Prentis R, Lis Y, Walker SR. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Brit J Clin Pharmacol. 1988;25(3):387–96.

    Article  CAS  Google Scholar 

  4. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

    Article  PubMed  Google Scholar 

  5. Sarkari M, Brown J, Chen X, Swinnea S, Williams RO, Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm. 2002;243:17–31.

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Young TJ, Sarkari M, Williams RO, Johnston KP. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm. 2002;242:3–14.

    Article  CAS  PubMed  Google Scholar 

  7. Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62:1569–79.

    Article  CAS  PubMed  Google Scholar 

  8. Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm. 1995;125:309–13.

    Article  CAS  Google Scholar 

  9. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  PubMed  Google Scholar 

  10. Müller R, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. Int J Pharm. 1998;160:229–37.

    Article  Google Scholar 

  11. Krause KP, Müller RH. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation. Int J Pharm. 2001;214:21–4.

    Article  CAS  PubMed  Google Scholar 

  12. Bhakay A, Davé R, Bilgili E. Recovery of BCS Class II drugs during aqueous redispersion of core–shell type nanocomposite particles produced via fluidized bed coating. Powder Technol. 2012. doi:10.1016/j.powtec.2011.12.066

  13. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364:64–75.

    Article  PubMed  Google Scholar 

  14. Liversidge G, Cundy K. Surface modified drug nanoparticles. US Patent 5145684. 1992.

  15. Fasano A. Innovative strategies for the oral delivery of drugs and peptides. Trends Biotechnol. 1998;16:152–7.

    Article  CAS  PubMed  Google Scholar 

  16. Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci Technol. 2011;4:139–53.

    Google Scholar 

  17. Müller R, Becker R, Kruss B, Peters K. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. US Patent 5,858,410. 1999

    Google Scholar 

  18. Müller RH, Böhm BHL, Grau MJ. Nanosuspensions: a formulation approach for poorly soluble drugs and poorly bioavailable drugs. In: Wise D, editor. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker; 2000. p. 345–57.

    Google Scholar 

  19. Roblegg E, Jäger E, Hodzic A, Koscher G, Mohr S, Zimmer A, et al. Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion. Eur J Pharm Biopharm. 2011;79:635–45.

    Article  CAS  PubMed  Google Scholar 

  20. Ramirez-Garcia S, Chen L, Morris MA, Dawson KA. A new methodology for studying nanoparticle interactions in biological systems: dispersing titania in biocompatible media using chemical stabilisers. Nanoscale. 2011;3:4617–24.

    Article  CAS  PubMed  Google Scholar 

  21. Müller RH. Zetapotential und Partikelladung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, editor. 1996.

  22. Kolter K, Karl M, Gryczke A. Hot-melt extrusion with BASF pharma polymers. BASF SE, Pharma Ingredients & Services; 67056 Ludwigshafen, Germany; 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Roblegg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khinast, J., Baumgartner, R. & Roblegg, E. Nano-extrusion: a One-Step Process for Manufacturing of Solid Nanoparticle Formulations Directly from the Liquid Phase. AAPS PharmSciTech 14, 601–604 (2013). https://doi.org/10.1208/s12249-013-9946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9946-0

KEY WORDS

Navigation