Skip to main content
Log in

Photodegradation of Fleroxacin Injection: II. Kinetics and Toxicological Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Photodegradation kinetics of fleroxacin were investigated in different injections. Five commercial formulations were analyzed before and after irradiation by determining residual volumes of fleroxacin with high-pressure liquid chromatography (HPLC), and different decomposition functions and models were obtained. Concentration levels of fleroxacin in injections caused the differences in photodegradation kinetics instead of ingredients. Influences of different pH values and presence of NaCl on photodegradation of fleroxacin were observed. Low pH value decreased the efficacy of photolysis and enhanced photostability of fleroxacin injections. Tentative structure of a new degradation product afforded was proposed. An acute toxicity assay using the bioluminescent bacterium Q67 was performed for fleroxacin injections after exposure to light. The research proved that fleroxacin was more photolabile in dilute injection, and acute toxicity of dilute injection increased more rapidly than that of concentrated injection during irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Djurdjevic P, Laban A, Jelikic-Stankov M. Validation of an HPLC method for the determination of fleroxacin and its photo-degradation products in pharmaceutical forms. Ann Chim. 2004;94:71–83.

    Article  PubMed  CAS  Google Scholar 

  2. Cullmann W, Geddes AM, Weidekamm E, Urwyler H, Braunsteiner A. Fleroxacin: a review of its chemistry, microbiology, toxicology, pharmacokinetics, clinical efficacy and safety. Int J Antimicrob Agents. 1993;2:203–30.

    Article  PubMed  CAS  Google Scholar 

  3. Tiefenbacher EM, Haen E, Przybilla B, Kurz H. Photodegradation of some quinolones used as antimicrobial therapeutics. J Pharm Sci. 1994;83:463–7.

    Article  PubMed  CAS  Google Scholar 

  4. Albini A, Monti S. Photophysics and photochemistry of fluoroquinolones. Chem Soc Rev. 2003;32:238–50.

    Article  PubMed  CAS  Google Scholar 

  5. Martinez LJ, Li G, Chignell CF. Photogeneration of fluoride by the fluoroquinolone antimicrobials agents lomefloxacin and fleroxacin. Photochem Photobiol. 1997;65:599–602.

    Article  PubMed  CAS  Google Scholar 

  6. Wang J, Li W, Li CG, Hu YZ. Photodegradation of fleroxacin injection: different products with different concentration levels. AAPS PharmSciTech. 2011;12:872–8. doi:10.1208/s12249-011-9658-2.

    Article  PubMed  CAS  Google Scholar 

  7. Shaojun J, Shourong Z, Daqiang Y, Lianhong W, Liangyan C. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere. 2008;73:377–82. doi:10.1016/j.chemosphere.2008.05.042.

    Article  Google Scholar 

  8. Marina I, Margherita L, Angela N, Luigia P, Alfredo P. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ. 2005;346:87–98.

    Article  Google Scholar 

  9. Ma M, Tong Z, Wang Z, Zhu W. Acute toxicity bioassay using the freshwater luminescent bacterium Vibrio-qinghaiensis sp. Nov.-Q67. Bull Environ Contam Toxicol. 1999;62:247–53.

    Article  PubMed  CAS  Google Scholar 

  10. Ma XY, Wang XC, Liu YJ. Study of the variation of ecotoxicity at different stages of domestic wastewater treatment using Vibrio-qinghaiensis sp.-Q67. J Hazard Mater. 2011;190:100–5.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang YY, Zhang WJ, Liao XJ, Zhang JN, Hou YX, Xiao ZY, et al. Degradation of diazinon in apple juice by ultrasonic treatment. Ultrason Sonochem. 2010;17:662–8.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang YH, Liu SS, Song XQ, Geb HL. Prediction for the mixture toxicity of six organophosphorus pesticides to the luminescent bacterium Q67. Ecotoxicol Environ Saf. 2008;71:880–8.

    Article  PubMed  CAS  Google Scholar 

  13. ICH. Q1B photostability testing of new drug substances and products. International Conference on Harmonisation. 1996. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm065005.htm. Accessed 10 Sept 2012

  14. Garcia CV, Nudelman NS, Steppe M, Schapoval EES. Structural elucidation of rabeprazole sodium photodegradation products. J Pharm Biomed Anal. 2008;46:88–93. doi:10.1016/j.jpba.2007.09.002.

    Article  PubMed  CAS  Google Scholar 

  15. International Organization for Standardization. International standard. ISO 11348. Water quality-determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)-part 3: Method using freeze-dried bacteria. First edition. 1998.

  16. Tetsuya A, Yukinori K, Ikumi O, Hiroaki K. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution. Chem Pharm Bull. 2002;50:229–34.

    Article  Google Scholar 

  17. Ge LK, Chen JW, Zhang SY, Cai YX, Wang Z, Wang CL. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions. Chin Sci Bull. 2010;55:996–1001. doi:10.1007/s11434-010-0139.

    Google Scholar 

  18. Song Z, Chen XH, Zhang D, Ren L, Fang L, Cheng WM, et al. Kinetic study of the degradation of PAC-1 and identification of a degradation product in alkaline condition. Chromatographia. 2009;70:1575–80. doi:10.1365/s10337-009-1348-90009-5893/09/12.

    Article  CAS  Google Scholar 

  19. Claudia G, Marcela L. Development of HPLC and UV spectrophotometric methods for the determination of ascorbic acid using hydroxypropyl-β-cyclodextrin and triethanolamine as photostabilizing agents. Anal Chim Acta. 2010;659:159–66.

    Article  Google Scholar 

  20. Zhang Y, Liu XL, Cui Y, Huang HF, Chi N, Tang X. Aspects of degradation kinetics of azithromycin in aqueous solution. Chromatographia. 2009;70:67–73. doi:10.1365/s10337-009-1116-x. 0009-5893/09/07.

    Article  CAS  Google Scholar 

  21. Hanne HT. Formulation and stability testing of photolabile drugs. Int J Pharm. 2001;225:1–14.

    Article  Google Scholar 

  22. Ragno G, Cione E, Garofalo A, Genchi G, Ioele G, Risoli A, et al. Design and monitoring of photostability systems for amlodipine dosage forms. Int J Pharm. 2003;265:125–32.

    Article  PubMed  CAS  Google Scholar 

  23. Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. Int J Pharm. 1996;132:53–61.

    Article  CAS  Google Scholar 

  24. Gomeza M, Murciaa MD, Gomeza JL, Matafonova G, Batoevb V, Christofi N. Testing a KrCl excilamp as new enhanced UV source for 4-chlorophenol degradation: experimental results and kinetic model. Chem Eng Process. 2010;49:113–9. doi:10.1016/j.cep.2009.11.016.

    Article  Google Scholar 

  25. Park HR, Kim TH, Bark KM. Physicochemical properties of quinolone antibiotics in various environments. Eur J Med Chem. 2002;37:443–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Wang, J. & Hu, YZ. Photodegradation of Fleroxacin Injection: II. Kinetics and Toxicological Evaluation. AAPS PharmSciTech 14, 578–584 (2013). https://doi.org/10.1208/s12249-013-9942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9942-4

KEY WORDS

Navigation