Skip to main content

Advertisement

Log in

Evaluation of Meloxicam-Loaded Cationic Transfersomes as Transdermal Drug Delivery Carriers

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study is to develop meloxicam (MX)-loaded cationic transfersomes as skin delivery carriers and to investigate the influence of formulation factors such as cholesterol and cationic surfactants on the physicochemical properties of transfersomes (i.e., particle size, size distribution, droplet surface charge and morphology), entrapment efficiency, stability of formulations and in vitro skin permeation of MX. The transfersomes displayed a spherical structure. Their size, charge, and entrapment efficiency depended on the composition of cholesterol and cationic surfactants in the formulation. Transfersomes provided greater MX skin permeation than conventional liposomes and MX suspensions. The penetration-enhancing mechanism of skin permeation by the vesicles prepared in this study may be due to the vesicle adsorption to and/or fusion with the stratum corneum. Our results suggest that cationic transfersomes may be promising dermal delivery carriers of MX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pérez-Cullell N, Coderch L, Maza A, Parra JL, Estelrich J. Influence of the fluidity of liposome compositions on percutaneous absorption. Drug deliv. 2000;7:7–13.

    Article  PubMed  Google Scholar 

  2. Verma DD, Verma S, Blume G, Fahr A. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm. 2003;55:271–7.

    Article  PubMed  CAS  Google Scholar 

  3. Montenegro L, Panico AM, Ventimiglia A, Bonina FP. In vitro retinoic acid release and skin permeation from different liposome formulations. Int J Pharm. 1996;133:89–96.

    Article  CAS  Google Scholar 

  4. Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103:123–36.

    Article  PubMed  CAS  Google Scholar 

  5. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65:403–18.

    Article  PubMed  CAS  Google Scholar 

  6. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophy Acta. 1992;1104(1):226–32.

    Article  CAS  Google Scholar 

  7. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322:60–6.

    Article  PubMed  CAS  Google Scholar 

  8. El Maghraby GM, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51:1123–34.

    Article  PubMed  Google Scholar 

  9. El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196:63–74.

    Article  PubMed  Google Scholar 

  10. W-s Z, X-q F, L-l W, Y-j Z. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1–2):291–8.

    Google Scholar 

  11. Song Y-K, Kim C-K. Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials. 2006;27:271–80.

    Article  PubMed  CAS  Google Scholar 

  12. Mohammed AR, Weston N, Coombes AGA, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm. 2004;285:23–34.

    Article  PubMed  CAS  Google Scholar 

  13. Katahira N, Murakami T, Kugai S, Yata N, Takano M. Enhancement of topical delivery of a lipophilic drug from charged multilamellar liposomes. J Drug Target. 1999;6(6):405–14.

    Article  PubMed  CAS  Google Scholar 

  14. Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Götz F, Manosro W, et al. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm. 2010;392:304–10.

    Article  PubMed  CAS  Google Scholar 

  15. Gillet A, Compère P, Lecomte F, Hubert P, Ducat E, Evrard B, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411:223–31.

    Article  PubMed  CAS  Google Scholar 

  16. Young-Chang A, Jin-Kyu C, Yang-Kyu C, Han-Moi K, Joon-Ho B. A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm. 2010;385:12–9.

    Article  Google Scholar 

  17. Gupta SK, Bansal P, Bhardwaj RK, Jaiswai J, Velpandian T. Comparison of analgesic and anti-inflammatory activity of meloxicam gel with dichlofenac and piroxicam gel in animal models: pharmacokinetic parameters after topical application. Skin Pharmacol Appl Skin Phys. 2002;15:105–11.

    Article  CAS  Google Scholar 

  18. Jantharaprapap R, Stagni G. Effects of penetration enhancers on in vitro permeability of meloxicam gels. Int J Pharm. 2007;343:26–33.

    Article  PubMed  CAS  Google Scholar 

  19. Ngawhirunpat T, Panomsuk S, Opanasopit P, Rojanarata T, Hatanaka T. Comparison of the percutaneous absorption of hydrophilic and lipophilic compounds in shed snake skin and human skin. Pharmazie. 2006;61:331–6.

    PubMed  CAS  Google Scholar 

  20. Tavano L, Muzzalupo R, Cassano R, Trombino S, Ferrarelli T, Picci N. New sucrose cocoate based vesicles: preparation characterization and skin permeation studies. Colloid Surface B. 2010;75:319–22.

    Article  CAS  Google Scholar 

  21. Fang Y-P, Tsai Y-H, Wu P-C, Huang Y-B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm. 2008;356:144–52.

    Article  PubMed  CAS  Google Scholar 

  22. Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersome. J Drug Deliv. 2010. doi:10.1155/2011/418316.

  23. Smith EW, Maibach HI. Percutaceous penetration enhancement. 2nd ed. Boca Raton: Taylor and Francis; 2006.

    Google Scholar 

  24. El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci. 2008;34:203–22.

    Article  PubMed  Google Scholar 

  25. Obata Y, Utsumi S, Watanabe H, Suda M, Tokudome Y, Otsuka M, et al. Infrared spectroscopic study of lipid interaction in stratum corneum treated with transdermal absorption enhancers. Int J Pharm. 2010;389:18–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Silpakorn University Research and Development Institute, Graduate School of Silpakorn University and the Thailand Research Funds through the Golden Jubilee Ph.D. Program (Grant No. PHD/0141/2550) for financial support.

Declaration of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanasait Ngawhirunpat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duangjit, S., Opanasopit, P., Rojanarata, T. et al. Evaluation of Meloxicam-Loaded Cationic Transfersomes as Transdermal Drug Delivery Carriers. AAPS PharmSciTech 14, 133–140 (2013). https://doi.org/10.1208/s12249-012-9904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9904-2

KEY WORDS

Navigation