Skip to main content

Advertisement

Log in

A Drug-in-Adhesive Matrix Based on Thermoplastic Elastomer: Evaluation of Percutaneous Absorption, Adhesion, and Skin Irritation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A novel drug-in-adhesive matrix was designed and prepared. A thermoplastic elastomer, styrene–isoprene–styrene (SIS) block copolymer, in combination with tackifying resin and plasticizer, was employed to compose the matrix. Capsaicin was selected as the model drug. The drug percutaneous absorption, adhesion properties, and skin irritation were investigated. The results suggested that the diffusion through SIS matrix was the rate-limiting step of capsaicin percutaneous absorption. [SI] content in SIS and SIS proportions put important effects on drug penetration and adhesion properties. The chemical enhancers had strong interactions with the matrix and gave small effect on enhancement of drug skin permeation. The in vivo absorption of samples showed low drug plasma peaks and a steady and constant plasma level for a long period. These results suggested that the possible side effects of drug were attenuated, and the pharmacological effects were enhanced with an extended therapeutic period after application of SIS matrix. The significant differences in pharmacokinetic parameters produced by different formulations demonstrated the influences of SIS copolymer on drug penetrability. Furthermore, the result of skin toxicity test showed that no skin irritation occurred in guinea pig skin after transdermal administration of formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Webster I. Recent developments in pressure-sensitive adhesives for medical applications. Int J Adhes Adhes. 1997;17:69–73. doi:10.1016/S0143-7496(96)00024-3.

    Article  CAS  Google Scholar 

  2. Galán C, Sierra CA, Gómez Fatou JM, Delgado JA. A hot-melt pressure-sensitive adhesive based on styrene–butadiene–styrene rubber: the effect of adhesive composition on the properties. J Appl Polym Sci. 1996;62:1263–75. doi:10.1002/(SICI)1097-4628.

    Article  Google Scholar 

  3. Nazhat SN, Parker S, Patel MP. Isoprene–styrene copolymer elastomer and tetrahydrofurfuryl methacrylate mixtures for soft prosthetic applications. Biomaterials. 2001;22:2411–6. doi:10.1016/S0142-9612(00)00428-2.

    Article  PubMed  CAS  Google Scholar 

  4. Kim DJ, Kim HJ, Yoon G. Effect of substrate and tackifier on peeling strength of SIS (styrene–isoprene–styrene)-based HMPSAs. Int J Adhes Adhes. 2005;25:288–95. doi:10.1016/j.ijadhadn.2004.10.001.

    Article  CAS  Google Scholar 

  5. Laurer JH, Khan SA, Spontak RJ. Morphology and rheology of SIS and SEPS triblock copolymers in the presence of a midblock-selective solvent. Langmuir. 1999;15:7947–55. doi:10.1021/la981441n.

    Article  CAS  Google Scholar 

  6. Gibert FX, Marin G, Derail C, Allal A, Lechat A. Rheological properties of hot melt pressure-sensitive adhesives based on styrene–isoprene copolymers. PartI: a rheological model for [SIS-SI] formulations. J Adhesion. 2003;79:825–52. doi:10.1080/00218460309552.

    Article  CAS  Google Scholar 

  7. Lee WL, Kim HD, Kim EY. Morphological reorientation by extensional flow deformation of a triblock copolymer styrene–isoprene–styrene. Curr Appl Phys. 2006;6:718–22. doi:10.1016/j.cap.2005.04.026.

    Article  Google Scholar 

  8. Efrain RP, Michael CW. Thermodynamics of plasticized triblock copolymers. Part II: model verification by light transmittance and rheology. Polym Eng Sci. 1977;17:573–81. doi:10.1002/pen.760170814.

    Article  Google Scholar 

  9. Zhang JY, Park YJ, Kim HY. A new approach on the thermal stability of SDS copolymer for HMPSA, Part I: oxidation kinetics for the whole process. Polym Degrad Stab. 2008;93:1008–23. doi:10.1016/j.polymdegradstab.2007.12.016.

    Article  CAS  Google Scholar 

  10. Myoung Y, Yamazaki T, Choi HK. Permeation of ciclopirox across porcine hoof membrane: effect of pressure sensitive adhesives and vehicles. Euro J Pharm Sci. 2003;20:319–25. doi:10.1016/j.ejps.2003.07.001.

    Article  CAS  Google Scholar 

  11. Wang CX, Han W, Tang XZ, Zhang H. Evaluation of drug release profile from patches based on styrene–isoprene–styrene block copolymer: the effect of block structure and plasticizer. AAPS PharmSciTech. 2012;13:556–67. doi:10.1208/s12249-012-9778-3.

    Article  PubMed  CAS  Google Scholar 

  12. Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis model with human and animal skin in in-vitro percutaneous absorption. Int J Pharm. 2001;215:51–6. doi:10.1016/S0378-5173(00)00665-7.

    Article  PubMed  CAS  Google Scholar 

  13. Fusco B, Giacovazzo M. Peppers and pain: the promise of capsaicin. Drugs (Basel). 1997;53:909–14.

    CAS  Google Scholar 

  14. Thomas NS, Panchagnula P. Transdermal delivery of zidovudine: effect of vehicles on permeation across rat skin and their mechanism of action. Euro J Pharm Sci. 2003;18:71–9. doi:10.1016/S0928-0987(02)00242-7.

    Article  CAS  Google Scholar 

  15. Fang JY, Wu PC, Huang YB, Tsai YH. In vitro permeation study of capsaicin and its synthetic derivatives from ointment bases using various skin types. Int J Pharm. 1995;126:119–28. doi:10.1016/0378-5173(95)04105-2.

    Article  CAS  Google Scholar 

  16. Fang JY, Wu PC, Huang YB, Tsai YH. In vivo percutaneous absorption of capsaicin, nonivamide and sodium nonivamide acetate from ointment bases pharmacokinetic analysis in rabbits. Int J Pharm. 1996;128:169–77. doi:10.1016/0378-5174(95)04274-1.

    Article  CAS  Google Scholar 

  17. Zhang Y, Huo MR, Zhou JP, Xie SF. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Meth Prog Bio. 2010;99:306–14. doi:10.1016/j.cmpb.2010.01.007.

    Article  Google Scholar 

  18. Frosch PJ, Schulze DA, Hoffmann M, Axthelm I, Kurte AU. Efficacy of skin barrier creams (I) the repetitive irritation test (RIT) in guinea pig. Contact Dermatitis. 1993;28:94–100.

    Article  PubMed  CAS  Google Scholar 

  19. Jibry N, Murdan S. In vivo investigation, in mice and in man, into the irritation potential of novel amphiphilogels being studied as transdermal drug carriers. Eur J Pharm Biopharm. 2004;58:107–19. doi:10.1016/j.ejpb.2004.02.013.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang JH, Liu ZP, Du H, Zeng Y, Deng LD, Xing JF, et al. A novel hydrophilic adhesive matrix with self-enhancement for drug percutaneous permeation through rat skin. Pharm Res. 2009;26:1398–406. doi:10.1007/s11095-009-9850-1.

    Article  PubMed  CAS  Google Scholar 

  21. Sun YH, Fang L, Zhu M, Li W, Meng P, Li L, et al. A drug-in-adhesive transdermal patch for S-amlodipine free base: in vitro and in vivo characterization. Int J Pharm. 2009;382:165–71. doi:10.1016/j.ijpharm.2009.08.031.

    Article  PubMed  CAS  Google Scholar 

  22. Magnusson MM, Koskinen LOD. In vitro percutaneous penetration of topically applied capsaicin in relation to in vivo sensation responses. Int J Pharm. 2000;195:55–62. doi:10.1016/S0378-5173(99)00337-3.

    Article  PubMed  CAS  Google Scholar 

  23. Fang JY, Wu PC, Huang YB, Tsai YH. In vivo percutaneous absorption of capsaicin, nonivamide and sodium nonivamide acetate from ointment bases: skin erythema test and non-invasive surface recovery technique in humans. Int J Pharm. 1996;131:143–51. doi:10.1016/0378-5173(95)00178-6.

    Article  CAS  Google Scholar 

  24. Ho HO, Huang FC, Sokoloski TD, Sheu MT. The influence of cosolvents on the in-vitro percutaneous penetration of diclofenac sodium from a gel system. J Pharm Pharmacol. 1994;46:636–42. doi:10.1111/j.2042-7158,1994.tb03873.x.

    Article  PubMed  CAS  Google Scholar 

  25. Guy RH, Hadgraft J. Rate control in transdermal delivery. Int J Pharm. 1992;82:R1–6. doi:10.1016/0378-5173(92)90183-3.

    Article  Google Scholar 

  26. Ah YC, Choi JK, Choi YK, Ki HM, Bae JH. A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. Int J Pharm. 2010;385:12–9. doi:10.1016/j.ijpharm.2009.10.013.

    Article  PubMed  CAS  Google Scholar 

  27. Ren CS, Fang L, Ling L, Wang Q, Liu SH, Zhao LG, et al. Design and in vivo evaluation of an indapamide transdermal patch. Int J Pharm. 2009;370:129–35. doi:10.1016/j.ijpharm.2008.12.2004.

    Article  PubMed  CAS  Google Scholar 

  28. Poh BT, Kwo HK. Shear strength of SMR-based pressure-sensitive adhesives. Polym-Plast Techol. 2007;46:1021–4. doi:10.1080/03602550701521957.

    Article  CAS  Google Scholar 

  29. Yat HK, Dodou K. Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterize adhesive performance. Int J Pharm. 2007;333:24–33. doi:10.1016/j.ijpharm.2006.09.043.

    Article  Google Scholar 

  30. Poh BT, Heng SS. Effect of blend ratio on adhesion properties of pressure-sensitive adhesives prepared from SBR/SMR L blends. Polym-Plast Technol. 2008;47:325–9. doi:10.1080/036202550701870081.

    Article  CAS  Google Scholar 

  31. Wokovich AM, Prodduturi S, Doub WH, Hussain AS, Buhse LF. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm. 2006;64:1–8. doi:10.1016/j.ejpb.2006.03.009.

    Article  PubMed  CAS  Google Scholar 

  32. Cheong HA, Choi HK. Effect of ethanolamine salts and enhancers on the percutaneous absorption of piroxicam from a pressure sensitive adhesive matrix. Euro J Pharm Sci. 2003;18:149–53. doi:10.1016/S0928-0987(02)00254-3.

    Article  CAS  Google Scholar 

  33. Qvist MH, Ulla H, Kreiligaard B, Madesn F, Frokajer S. Release of chemical permeation enhancers from drug-in-adhesive transdermal patches. Int J Pharm. 2002;231:253–63. doi:S0378-5173(01)00893-6.

    Article  PubMed  CAS  Google Scholar 

  34. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliver Rev. 2004;56:603–18. doi:10.1016/j.addr.2003.10.025.

    Article  CAS  Google Scholar 

  35. Fang JY, Fang CL, Hong CT, Chen HY, Lin TY, Wei HM. Capsaicin and nonivamide as novel skin permeation enhancers for indomethacin. Euro J Pharm Sci. 2001;12:195–203. doi:10.1016/S0928-0987(00)00118-4.

    Article  CAS  Google Scholar 

  36. Zhao LG, Li Y, Fang L, He ZG, Liu XT, Wang L, et al. Transdermal delivery of tolterodine by O-acylmenthol: in vitro/in vivo correlation. Int J Pharm. 2009;374:73–81. doi:10.1016/j.ijpharm.2009.03.005.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao JH, Fu JH, Wang SM, Su CH. A novel transdermal patch incorporating isosorbide dinitrate with bisoprolol: in vitro and in vivo characterization. Int J Pharm. 2007;337:88–101. doi:10.1016/j.ijpharm.2006.12.030.

    Article  PubMed  CAS  Google Scholar 

  38. Wang YY, Hong TC, Chiu WT, Fang JY. In vitro and in vivo evaluations of topically applied capsaicin and nonivamide from hydrogels. Int J Pharm. 2001;224:89–104. doi:S0378-5173(01)00755-4.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Science and Technology Key Program for the 11th Five-Year Plan of China (2008BAI53B075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Liu, R., Tang, X. et al. A Drug-in-Adhesive Matrix Based on Thermoplastic Elastomer: Evaluation of Percutaneous Absorption, Adhesion, and Skin Irritation. AAPS PharmSciTech 13, 1179–1189 (2012). https://doi.org/10.1208/s12249-012-9849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9849-5

Key words

Navigation